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The Modern Allocation Trilemma

Dynamic Allocation of Reusable Resources
T rounds, 1 planner, K agents, 1 indivisible resource

Agents have agent- & round- dependent value – private
Agents craft arbitrary reports on their own – self-interested
Allocation incurs d-dimensional cost – facing constraints

Trilemma: Efficiency, Incentives, & Feasibility
Efficiency. Max social welfare (allocate to whom in need)
Incentives. Handle strategic manipulations
Feasibility. Obey long-term constraints (e.g., cost, energy)

Question. Can all three be achieved simultaneously?
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No “3-in-1” Approach in the Literature

Efficiency + Incentives. Classical mechanism design (e.g.,
VCG [Vickrey, 1961; Clarke, 1971; Groves, 1973] & many variants)
Efficiency + Feasibility. Online linear programming (many
primal-dual framework [Li et al., 2023; Balseiro et al., 2023])
Efficiency + Incentives + Feasibility? No unless super
restrictive assumptions (e.g., homogeneous agents [Yin et al.,
2022] & “fair share”-like constraints & non-social-welfare
objective [Gorokh et al., 2021]) “Impossible triangle”?

Efficiency

Incentives Feasibility
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Standard Methods Fail: The Strategic Gap

Standard Primal-Dual Methods
Decide dual λ1, . . . ,λT (“shadow prices” for cost constraints)
Give dual-adjusted primal allocation (ĩ∗t := argmaxi(vt,i − λT

t ct,i))

Fragile to strategic manipulation due to frequent dual updates
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Setup & Contribution

T rounds, 1 planner, K agents, 1 indivisible resource

Agent i private value vt,i
i.i.d.∼ Vi – dist. fixed but unknown

Agent i public cost ct,i
i.i.d.∼ Ci – dist. fixed but unknown

Agent i gives arbitrary report ut,i – very strategic
Planner decides allocation it & payment pt,it

Agents. max E[
∑

t γ
t
1[it = i](vt,i − pt,i)] (γ-discounted value-pay)

Planner. max E[
∑

t vt,it ] (undiscounted total social welfare)
subject to 1

T
∑

t ct,it ≤ ρ (d-dimensional cost constraint)

Main Result: Õ(
√

T ) Social Welfare Regret & 0 Constr Violation

Regret. E[
∑

t(vt,i∗t − vt,it )] = Õ(
√

T ) ({i∗t } := offline optimum)
Constr Violation. 1

T
∑

t ct,it ≤ ρ a.s. (0 constraint violation)
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√

T ) Social Welfare Regret & 0 Constr Violation

Regret. E[
∑

t(vt,i∗t − vt,it )] = Õ(
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Incentive-Aware Primal Allocation
Online-Learning–Based Dual Update

Primal Allocation: Incentive-Aware Framework

Goal. Given dual λt , make allocations – despite strategic reports

Incentive-Aware Primal Allocation Framework: 3 Innovations
1 Epoch-Based Lazy Updates.

Fix dual variables / shadow prices λℓ within long “epochs”
=⇒ Reduce agents’ manipulation incentive & ability

2 Uniform Exploration.
With low prob offer random prices to random agents
=⇒ Impose immediate utility loss for misreporting

3 Dual-Adjusted Payments.
VCG-like rule aligning social welfare & dual-adjusted value
=⇒ Truth-telling is optimal in normal rounds

Theorem. Õ(1) misreports & Õ(1) misallocations per epoch

Yan Dai, Negin Golrezaei, and Patrick Jaillet Incentive-Aware Resource Allocation under Constraints
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=⇒ Impose immediate utility loss for misreporting

3 Dual-Adjusted Payments.
VCG-like rule aligning social welfare & dual-adjusted value
=⇒ Truth-telling is optimal in normal rounds

Theorem. Õ(1) misreports & Õ(1) misallocations per epoch
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Theorem. Õ(1) misreports & Õ(1) misallocations per epoch

Yan Dai, Negin Golrezaei, and Patrick Jaillet Incentive-Aware Resource Allocation under Constraints



7/9

Introduction
Technical Contribution

Incentive-Aware Primal Allocation
Online-Learning–Based Dual Update

Dual Updates: Breaking Ω(T 2/3) via Predictability
Goal. Update duals to capture constraints – despite lazy updates

Challenge: Lazy Updates ⇒ Slow Learning

Standard online learning (e.g., FTRL, FTPL) gives Õ(T 2/3)

Learning Barrier. Lazy updates =⇒ Ω(T 2/3) [Dekel et al., 2014]

Key Insight: Utilize Near-Truthfulness of Agents
Incentive-aware primal allocation =⇒ near-truthful reports

1 =⇒ near-i.i.d. future allocations & cost consumption
2 =⇒ near-truthful historical reports for reliable predictions

Novel Online Learning Framework: O-FTRL-FP
Equip Optimistic FTRL [Rakhlin and Sridharan, 2013] with Fixed Points
Allow action-dependent predictions: If round-t loss func ft(x) depends on
round-t action xt , we allow f̂t(x; xt)-style predictions instead of only f̃t(x)
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Main Results & Takeaway

Main Contribution
First dynamic mechanism achieving the trilemma:

Efficiency. Optimal Õ(
√

T ) regret (matching non-strategic LB)
Incentives. Robust to strategic agents (∃ near-truthful PBE)
Feasibility. Zero constraint violation (with probability 1)

Key Techniques
Incentive-Aware Primal Allocations. Novel mixture of lazy
updates, uniform exploration, & dual-adjusted payments
Dual Learning via Predictions. Truthful ⇒ predictability
(nearly) & novel O-FTRL-FP framework for online learning

Questions are more than welcomed!
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