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Introduction
Our Approach

From SNO to ANO
Model & Objective

Stochastic Network Optimization (SNO)

Dynamically allocates resources in networks to fulfill demands, with
strong & rigorous performance guarantees including

Throughput Maximization, e.g., [Tassiulas and Ephremides, 1992;
2002; Dai and Lin, 2005; Shah and Shin, 2012], ...
Delay Minimization, e.g., [Eryilmaz and Srikant, 2007], ...
Utility Maximization, e.g., [Neely et al., 2005; Georgiadis et al., 2006;
Jiang and Walrand, 2009], ...

as well as numerous successful applications including
Wireless Networks [Lin and Shroff, 2006; Srikant and Ying, 2013]

Cloud Computing [Meng et al., 2010; Maguluri et al., 2012]

Supply Chain Management [Rahdar et al., 2018]

Yan Dai and Longbo Huang Adversarial Network Optimization under Bandit Feedback



3/16

Introduction
Our Approach

From SNO to ANO
Model & Objective

Key Limitations of Vanilla SNO

Despite huge success, vanilla SNO faces critical limitations:

Limitation 1: Stationary Assumption
Classical SNO requires network conditions (e.g., arrival /
service rates, capacities) to be stationary over time
Fails in reality: auto driving, mobile networks, DDoS, ...
⇒ Consider Adversarial Network Optimization (ANO)

Limitation 2: Full Prior-Decision Information
Many existing network optimization works also require
network conditions to be known a-priori
Fails in reality: underwater communication, IoT sensors, ...
⇒ Consider Bandit Feedback Models
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Introduction
Our Approach

From SNO to ANO
Model & Objective

Challenges and Main Contributions

(Q). Can we maximize utility in adversarial & multi-hop
networks only using bandit feedback?

Why is this HARD?

ANO. No reliable statistics. Need
worst-case guarantees
Bandit feedback. No pre-decision
info. Only see outcome of chosen
action – no counterfactuals
Multi-Hop Topology. Complex
queue inter-dependencies
Utility Maximization. Unknown,
arbitrary, and time-varying utility

Our Contribution: UMO2

(Utility Max via OLO & BCO)

First algorithm to
answer (Q), with
rigorous utility &
stability guarantees
Roadmap: Online
Learning for ANO
Novel OL algs of
independent interest
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Introduction
Our Approach

From SNO to ANO
Model & Objective

Challenges and Main Contributions (Cont’d)

(Q). Can we maximize utility in adversarial & multi-hop
networks only using bandit feedback?

Network Arrival &
Conditions Service Topology Objective Utility

[Neely et al., 2005] Stochastic Known Multi-Hop Utility Maximization Known
[Neely, 2010] Adversarial Known Multi-Hop Utility Maximization Known

[Liang and Modiano, 2018b] Adversarial Known Multi-Hop Network Stability —
[Liang and Modiano, 2018a] Adversarial Known Multi-Hop Utility Maximization Known

[Yang et al., 2023] Adversarial Unknown Single-Hop Network Stability —
[Huang et al., 2024] Adversarial Unknown Single-Hop Network Stability —

Ours Adversarial Unknown Multi-Hop Utility Maximization Unknown

Table: Comparison with Most Related Works
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Introduction
Our Approach

From SNO to ANO
Model & Objective

Our Setup: ANO with Bandit Feedback

1
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Multi-Hop Network G = (N ,L); T -round planning

Arrival Decision λ(t) under adv & unknown utility func gt(λ(t))
Multiple Queues Q(k)

n (t) (#jobs at server n & with destination k)
Routing Decision a(t) under adv & unknown capacity Cn,m(t)
Bandit Feedback after decision: only observes gt(λ(t)) but not gt
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Introduction
Our Approach

Network Stability & Online Linear Optimization
Utility Maximization & Bandit Convex Optimization

Online Learning for ANO: 3-Step Punchline
1 Reduce to Online Learning via global Lyapunov analysis

single Lyapunov term is too sensitive to adversarial corruptions

2 Design novel queue-based OL for ANO-specific challenges
unbounded queue lengths ⇒ unbounded loss magnitudes

3 Extend OL guarantees to ANO via self-bounding analysis
E[
∑

t∥Q(t)∥1] ≤ T1/4 E[
√∑

t∥Q(t)∥2
2] ⇒ network stable

Global Lyapunov Analysis

Online Linear Optimization (OLO) Bandit Convex Optimization (BCO)

Deciding Link Routing via AdaPFOL Deciding Arrival Rates via AdaBGD

UMO2: Utility Maximization via
Online Linear Optimization &
Bandit Convex Optimization

Reduction Reduction

Novel OLO Alg Novel BCO Alg

Self-Bounding Self-Bounding

Figure: Analysis Roadmap of Our Algorithm UMO2
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Introduction
Our Approach

Network Stability & Online Linear Optimization
Utility Maximization & Bandit Convex Optimization

Algorithms & Analysis Outlines

In each round
t = 1, 2, . . . ,T

Decide an,m(t) via
OLO alg AdaPFOLn,m

Link Routing

Decide λ(t) via
BCO alg AdaBGD

Arrival Rates

See capacity Cn,m ,
update AdaPFOLn,m

Feedback

See utility gt(λ(t)),
update AdaBGD

Feedback

Figure: UMO2 for Utility Maximization
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Introduction
Our Approach

Network Stability & Online Linear Optimization
Utility Maximization & Bandit Convex Optimization

Network Stability ⇒ Online Linear Optimization

Step 1: Reduction via Global Lyapunov Analysis

Stability min E
[∑

t
∥Q(t)∥1

]

⇓ (Global Lyapunov drift analysis)

∀(n,m) ∈ L, min E
[∑

t
⟨ an,m(t)

︸ ︷︷ ︸
Decision

, Cn,m(t)(Qm(t)− Qn(t))

︸ ︷︷ ︸
Loss Vector

⟩
]

=⇒ Reduce to Online Linear Optimization (OLO)

ANO-Specific Challenges

1 Unbounded Loss Magnitudes
2 Negative Loss Components
3 Requires Adaptivity

Existing OLO algorithms fail to tackle all issues simultaneously.
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⟩
]

=⇒ Reduce to Online Linear Optimization (OLO)

ANO-Specific Challenges

1 Unbounded Loss Magnitudes
2 Negative Loss Components
3 Requires Adaptivity

Existing OLO algorithms fail to tackle all issues simultaneously.
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OLO Guarantee ⇒ Network Stability Guarantee

Step 2: A Novel & Customized OLO algorithm: AdaPFOL

O
(√∑

t∥Cn,m(t)(Qm(t)− Qn(t))∥2
2

)

≲ O
(√∑

t∥Q(t)∥2
2

)
allows large magnitudes, negative losses, and is adaptive

Step 3: Self-Bounding Analysis for ANO Guarantee
Self-bounding analysis: From Steps 1 & 2, NSO ensures

E

[∑
t
∥Q(t)∥1

]
≤ O(T 1/4)E

√∑
t
∥Q(t)∥2

2

 ≤ O(T 1/4)E

[∑
t
∥Q(t)∥1

]3/4

,

=⇒ 1
T E[

∑
t∥Q(t)∥1] = O(1), i.e., network is stabilized by NSO
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Network Stability to Utility Maximization: Another 3 Steps

In each round
t = 1, 2, . . . ,T

Decide an,m(t) via
OLO alg AdaPFOLn,m

Link Routing

Decide λ(t) via
BCO alg AdaBGD

Arrival Rates

See capacity Cn,m ,
update AdaPFOLn,m

Feedback

See utility gt(λ(t)),
update AdaBGD

Feedback

Figure: NSO for Network Stability
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Analysis Sketch for UMO2

Step 1: Global Lyapunov Drift-plus-Penalty (DPP) Analysis
=⇒ min E[

∑
t
∑

(n,m)∈LCn,m(t)⟨an,m(t),Qm(t)− Qn(t)⟩]︸ ︷︷ ︸
OLO Regret (handled by AdaPFOL)

+ E[
∑

t⟨Q(t),λ(t)⟩ − Vgt(λ(t))]︸ ︷︷ ︸
Bandit Convex Optimization (BCO) Regret

(V = oT (1) is param)

Step 2-1: AdaPFOL

Reg ≲ O
(√∑

t∥Q(t)∥2
2

) Step 2-2: AdaBGD

Reg ≲ O
((∑

t∥Q(t)∥4/3
2

)3/4
)

Step 3: More Sophisticated Self-Bounding Analysis
1 Coarse queue length. 2-1&2 Self Bounding

=⇒ E[
∑

t∥Q(t)∥1] = O(VT )

2 Utility gap. Queue length O(VT ) =⇒ utility gap = O(V−1)

3 Refined queue length. 1+2 Self Bounding
=⇒ E[

∑
t∥Q(t)∥1] = O(T )
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Final Guarantee of UMO2

UMO2 Ensures Simultaneously...
Network Stability. Average queue length remain bounded:

1
T

E

[ T∑
t=1

∥Q(t)∥1

]
= OT (1)

Near-Optimal Utility. Utility converges to the best “mildly
varying” policy

a

with 1/poly(T ) gap (see our Thm 4.5):

1
T

E

[ T∑
t=1

gt(λ̊(t))− gt(λ(t))

]
= OT (1/poly(T ))

aAny forward-looking (i.e., allowing offline/hindsight optimization) policy with slowly changing actions.
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Main Results & Takeaway

Main Results
First utility result for multi-hop ANO w/ bandit feedback
General reduction framework from ANO to Online Learning
Novel adaptive OL algs (AdaPFOL, AdaBGD) for unique
network challenges (esp. unbounded queue & self-bounding)

Online Learning for ANO: 3-Step Punchline
1 Reduce to Online Learning via Global Lyapunov analyses
2 Design novel & customized OL algs for ANO challenges
3 Extend OL guarantee to ANO via self-bounding analysis

Questions are more than welcomed!
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