Dynamic Allocation of Reusable Resources to Strategic Agents under Long-Term Constraints

(NeurIPS'25; Winner of ACM Student Research @ SIGMETRICS'25)

Yan Dai Negin Golrezaei Patrick Jaillet

Massachusetts Institute of Technology

Resource Allocation under Incentives & Constraints

GPU Allocation

• Resource: Reusable GPU

• Agents: Research groups

• Constr: Energy & budget

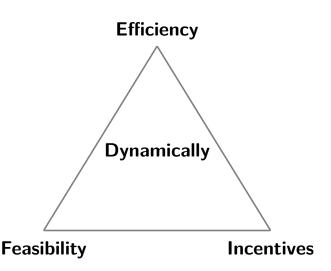
Resource Allocation under Incentives & Constraints

GPU Allocation

• Resource: Reusable GPU

• Agents: Research groups

• Constr: Energy & budget


Mobile Health Unit

Resource: MHU

• Agents: Remote regions

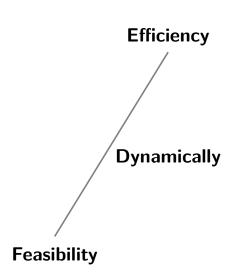
• Constr: Staffing & budget

Efficiency

ullet T rounds, K agents, value $v_{t,i} \sim {f unknown} \,\, {\cal V}_i$

Max value: $\sum_{t} v_{t,i_t}$

Efficiency

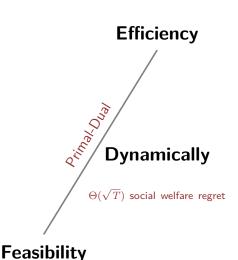

ullet T rounds, K agents, value $v_{t,i} \sim {\sf unknown} \,\, {\cal V}_i$

Max value:
$$\sum_{t} v_{t,i_t}$$

• Alloc cost $c_{t,i}$ (d-dim), iid \sim unknown C_i

Constr:
$$\sum_t oldsymbol{c}_{t,i_t} \leq Toldsymbol{
ho}$$

Feasibility

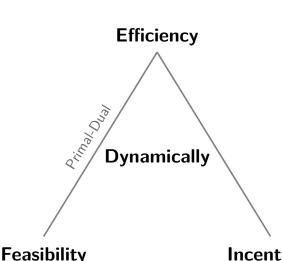


ullet T rounds, K agents, value $v_{t,i}\sim {\sf unknown}\ {\cal V}_i$

Max value:
$$\sum_{t} v_{t,i_t}$$

• Alloc cost $c_{t,i}$ (d-dim), iid \sim unknown C_i

Constr:
$$\sum_{t} oldsymbol{c}_{t,i_t} \leq Toldsymbol{
ho}$$



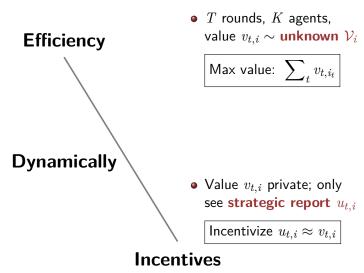
ullet T rounds, K agents, value $v_{t,i}\sim {\sf unknown}\ {\cal V}_i$

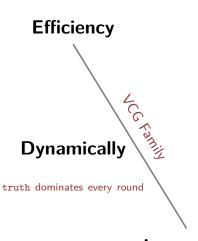
Max value:
$$\sum_{t} v_{t,i_t}$$

• Alloc cost $c_{t,i}$ (d-dim), iid \sim unknown C_i

Constr:
$$\sum_{t} oldsymbol{c}_{t,i_t} \leq Toldsymbol{
ho}$$

 T rounds, K agents, value $v_{t,i} \sim \mathbf{unknown} \ \mathcal{V}_i$

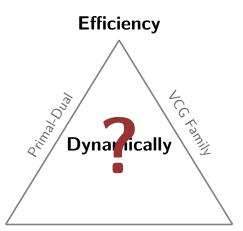

Max value: $\sum_{i} v_{t,i_t}$


• Alloc cost $c_{t,i}$ (d-dim), iid \sim unknown C_i

Constr:
$$\sum_{t} oldsymbol{c}_{t,i_t} \leq Toldsymbol{
ho}$$

• Value $v_{t,i}$ private; only see strategic report $u_{t,i}$

Incentivize $u_{t,i} \approx v_{t,i}$



ullet T rounds, K agents, value $v_{t,i} \sim {f unknown} \,\, {\cal V}_i$

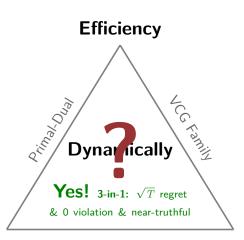
Max value: $\sum_{t} v_{t,i_t}$

• Value $v_{t,i}$ private; only see **strategic report** $u_{t,i}$

Incentivize $u_{t,i} \approx v_{t,i}$

ullet T rounds, K agents, value $v_{t,i} \sim {f unknown} \,\, {\cal V}_i$

Max value:
$$\sum_t v_{t,i_t}$$


• Alloc cost $c_{t,i}$ (d-dim), iid \sim unknown C_i

Constr:
$$\sum_{t} c_{t,i_t} \leq T
ho$$

• Value $v_{t,i}$ private; only see **strategic report** $u_{t,i}$

Incentivize $u_{t,i} \approx v_{t,i}$

Feasibility

ullet T rounds, K agents, value $v_{t,i} \sim {f unknown} \,\, {\cal V}_i$

Max value:
$$\sum_t v_{t,i_t}$$

• Alloc cost $c_{t,i}$ (d-dim), iid \sim unknown C_i

Constr:
$$\sum_{t} c_{t,i_t} \leq T
ho$$

• Value $v_{t,i}$ private; only see strategic report $u_{t,i}$

Incentivize
$$u_{t,i} \approx v_{t,i}$$

Feasibility

Efficiency Feasibility Incentives

Primal (Good Allocations)

Dual (Track Constraints)

Figure: Classical Primal-Dual in Round t

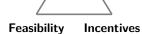


Figure: Classical Primal-Dual in Round t

Incentives

Feasibility

Efficiency

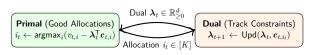
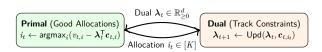
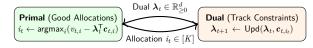


Figure: Classical Primal-Dual in Round t

Efficiency

Feasibility Incentives




Figure: Classical Primal-Dual in Round t

What Happens With Strategic Agents?

Efficiency

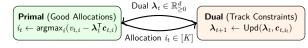

Feasibility Incentives

Figure: Classical Primal-Dual in Round t

Efficiency

Feasibility Incentives

Figure: Classical Primal-Dual in Round t

Efficiency Primal (Good Allocations) $i_t \leftarrow \operatorname{argmax}_i(v_{t,i} - \lambda_t^\mathsf{T} c_{t,i})$ Allocation $i_t \in [K]$ Dual (Track Constraints) $\lambda_{t+1} \leftarrow \operatorname{Upd}(\lambda_t, c_{t,i_t})$

Feasibility Incentives Figure: Classical Primal-Dual in Round t

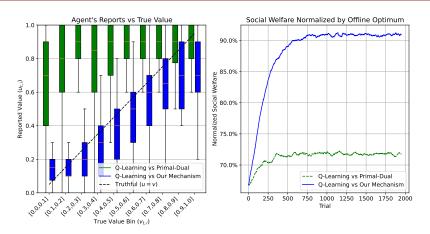


Figure: Vanilla Primal-Dual vs Our Mechanism

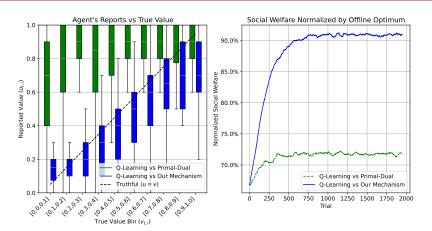


Figure: Vanilla Primal-Dual vs Our Mechanism

misreport vs truthful

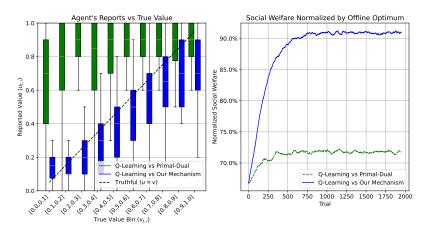
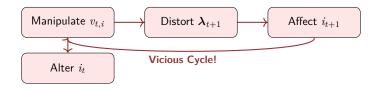


Figure: Vanilla Primal-Dual vs Our Mechanism


misreport vs truthful

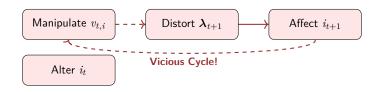
low vs high efficiency

Primal Allocations

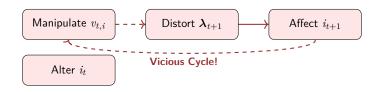
Primal Allocations: Pricing

1 Dual-Adjusted Pricing. VCG-like rule (adapted for λ)

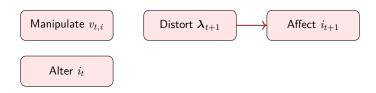
Primal Allocations: Pricing



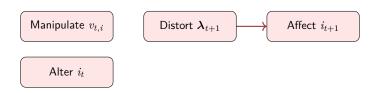
Primal Allocations: Pricing + Epoching


- **1 Dual-Adjusted Pricing.** VCG-like rule (adapted for λ) \Longrightarrow truth dominates (for static setups)
- **2 Epoch-Based Lazy Updates.** Fix λ for \sqrt{T} rounds

Primal Allocations: Pricing + Epoching


- **Dual-Adjusted Pricing.** VCG-like rule (adapted for λ) \Longrightarrow truth dominates (for static setups)
- **Epoch-Based Lazy Updates.** Fix λ for \sqrt{T} rounds \Longrightarrow hard to affect future (but not impossible)

Primal Allocations: Pricing + Epoching + Exploration


- **Oual-Adjusted Pricing.** VCG-like rule (adapted for λ) \Longrightarrow truth dominates (for static setups)
- **@ Epoch-Based Lazy Updates.** Fix λ for \sqrt{T} rounds \implies hard to affect future (but not impossible)
- Randomized Exploration. Misreport means harm

Primal Allocations: Pricing + Epoching + Exploration

- **Dual-Adjusted Pricing.** VCG-like rule (adapted for λ) \Longrightarrow truth dominates (for static setups)
- **@ Epoch-Based Lazy Updates.** Fix λ for \sqrt{T} rounds \implies hard to affect future (but not impossible)
- **3 Randomized Exploration.** Misreport means harm $\implies \exists$ near-truthful equilibrium (if harm \ge gain)

Primal Allocations: Pricing + Epoching + Exploration

- Dual-Adjusted Pricing. VCG-like rule (adapted for λ) \implies truth dominates (for static setups)
- **@ Epoch-Based Lazy Updates.** Fix λ for \sqrt{T} rounds \implies hard to affect future (but not impossible)

Theorem. $\widetilde{\mathcal{O}}(1)$ misreports & $\widetilde{\mathcal{O}}(1)$ misallocations per epoch

Dual Updates

Dual Updates

Dynamically tune $\pmb{\lambda}_1, \pmb{\lambda}_2, \dots$ according to costs

Dual Updates: Online Learning gives $\mathcal{O}(T^{2/3})$

Feasibility Incentives

Dynamically tune $\lambda_1, \lambda_2, \dots$ according to costs

Theorem 1: Sublinear Regret ✓

3 ingredients (primal) + GD / FTRL (dual) $\Longrightarrow \widetilde{\mathcal{O}}(T^{2/3})$ regret ("no-regret" guarantee)

Dual Updates: Online Learning gives $\widetilde{\mathcal{O}}(T^{2/3})$

Efficiency

Feasibility Incentives

Dynamically tune $\lambda_1, \lambda_2, \ldots$ according to costs

Theorem 1: Sublinear Regret ✓

3 ingredients (primal) + GD / FTRL (dual)

 $\Longrightarrow \widetilde{\mathcal{O}}(\mathit{T}^{2/3})$ regret ("no-regret" guarantee)

Can we do better?

Dual Updates: Online Learning gives $\widetilde{\mathcal{O}}(T^{2/3})$

Efficiency

Feasibility Incentives

Dynamically tune $\lambda_1, \lambda_2, \ldots$ according to costs

Theorem 1: Sublinear Regret ✓

3 ingredients (primal) + GD / FTRL (dual)

 $\Longrightarrow \widetilde{\mathcal{O}}(\mathit{T}^{2/3})$ regret ("no-regret" guarantee)

Can we do better?

• Lazy updates good for primal (less incentives & ablities)

Efficiency

Feasibility Incentives

Dynamically tune $\lambda_1, \lambda_2, \ldots$ according to costs

Theorem 1: Sublinear Regret ✓

3 ingredients (primal) + GD / FTRL (dual)

 $\Longrightarrow \widetilde{\mathcal{O}}(\mathit{T}^{2/3})$ regret ("no-regret" guarantee)

Can we do better?

- Lazy updates good for primal (less incentives & ablities)
- Lazy updates bad for dual

Efficiency

Feasibility Incentives

Dynamically tune $\lambda_1, \lambda_2, \dots$ according to costs

Theorem 1: Sublinear Regret ✓

3 ingredients (primal) + GD / FTRL (dual)

 $\Longrightarrow \widetilde{\mathcal{O}}(T^{2/3})$ regret ("no-regret" guarantee)

Can we do better?

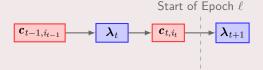
- Lazy updates good for primal (less incentives & ablities)
- Lazy updates bad for dual

No Lazy

Efficiency

Feasibility Incentives

Dynamically tune $\lambda_1, \lambda_2, \dots$ according to costs


Theorem 1: Sublinear Regret ✓

3 ingredients (primal) + GD / FTRL (dual)

 $\Longrightarrow \widetilde{\mathcal{O}}(T^{2/3})$ regret ("no-regret" guarantee)

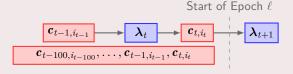
Can we do better?

- Lazy updates good for primal (less incentives & ablities)
- Lazy updates bad for dual

Efficiency

Feasibility Incentives

Dynamically tune $\lambda_1, \lambda_2, \ldots$ according to costs


Theorem 1: Sublinear Regret ✓

3 ingredients (primal) + GD / FTRL (dual)

 $\Longrightarrow \widetilde{\mathcal{O}}(T^{2/3})$ regret ("no-regret" guarantee)

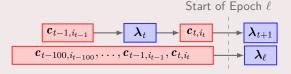
Can we do better?

- Lazy updates good for primal (less incentives & ablities)
- Lazy updates bad for dual

Efficiency

Feasibility Incentives

Dynamically tune $\lambda_1, \lambda_2, \ldots$ according to costs


Theorem 1: Sublinear Regret ✓

3 ingredients (primal) + GD / FTRL (dual)

 $\Longrightarrow \widetilde{\mathcal{O}}(T^{2/3})$ regret ("no-regret" guarantee)

Can we do better?

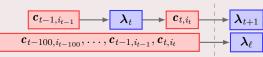
- Lazy updates good for primal (less incentives & ablities)
- Lazy updates bad for dual

Efficiency

Feasibility Incentives

Dynamically tune $\lambda_1, \lambda_2, \dots$ according to costs

Theorem 1: Sublinear Regret ✓


3 ingredients (primal) + GD / FTRL (dual)

 $\Longrightarrow \widetilde{\mathcal{O}}(T^{2/3})$ regret ("no-regret" guarantee)

Can we do better?

- Lazy updates good for primal (less incentives & ablities)
- ullet Lazy updates ullet dad ullet (cannot react to $oldsymbol{c}_{t,i_t}$ promptly)

Start of Epoch ℓ

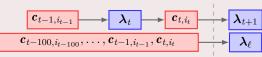
Efficiency

Feasibility Incentives

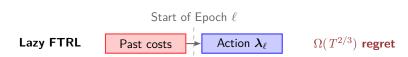
Dynamically tune $\lambda_1, \lambda_2, \ldots$ according to costs

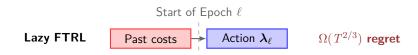
Theorem 1: Sublinear Regret ✓

3 ingredients (primal) + GD / FTRL (dual)


 $\Longrightarrow \widetilde{\mathcal{O}}(T^{2/3})$ regret ("no-regret" guarantee)

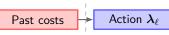
Can we do better?


- Lazy updates good for primal (less incentives & ablities)
- ullet Lazy updates bad for dual (cannot react to c_{t,i_t} promptly)


Start of Epoch ℓ

No Lazy Lazy

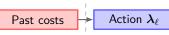
Theorem. "Low-switching online learning" has $\Omega(T^{2/3})$ regret



Key Insight: (Almost-)Truthfulness \Longrightarrow Predictability

Start of Epoch ℓ

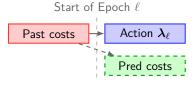
Lazy FTRL


 $\Omega(T^{2/3})$ regret

Key Insight: (Almost-)Truthfulness \Longrightarrow Predictability

 $\textbf{1} \quad \mathsf{Truthful} \Longrightarrow \mathsf{iid} \ \mathsf{future} \ \mathsf{cost} \ c_{t,i_t} \ (i_t \approx \mathsf{argmax}_i (v_{t,i} - \lambda_\ell^\mathsf{T} c_{t,i}))$

Start of Epoch ℓ


Lazy FTRL

 $\Omega(T^{2/3})$ regret

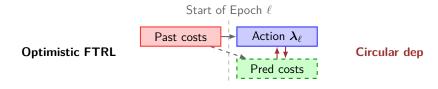
Key Insight: (Almost-)Truthfulness \Longrightarrow Predictability

- 2 Truthful \Longrightarrow reliable history (for distributions \mathcal{V}_i and \mathcal{C}_i)

Key Insight: (Almost-)Truthfulness ⇒ Predictability

- $\textbf{1} \; \mathsf{Truthful} \Longrightarrow \mathsf{iid} \; \mathsf{future} \; \mathsf{cost} \; c_{t,i_t} \; (i_t \approx \mathsf{argmax}_i(v_{t,i} \lambda_\ell^\mathsf{T} c_{t,i}))$
- 2 Truthful \Longrightarrow reliable history (for distributions V_i and C_i)
- ⇒ Predict new costs

Optimistic FTRL


Key Insight: (Almost-)Truthfulness ⇒ Predictability

- 2 Truthful \Longrightarrow reliable history (for distributions \mathcal{V}_i and \mathcal{C}_i)
- \Longrightarrow Predict new costs for better action λ_{ℓ}

Issue: Circular Dependency

• Yield λ_{ℓ} as-if true costs = pred costs

Issue: Circular Dependency

- Yield λ_{ℓ} as-if true costs = pred costs
- Yield pred costs as-if true dual = λ_{ℓ}

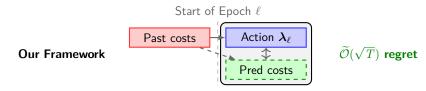
Issue: Circular Dependency

- Yield λ_{ℓ} as-if true costs = pred costs
- Yield pred costs as-if true dual = λ_{ℓ}

Novel online learning

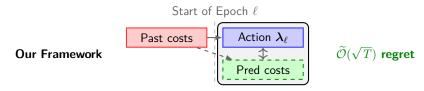
Issue: Circular Dependency

- Yield λ_{ℓ} as-if true costs = pred costs
- Yield pred costs as-if true dual = λ_{ℓ}


Novel online learning

Issue: Circular Dependency

- Yield λ_{ℓ} as-if true costs = pred costs
- Yield pred costs as-if true dual = λ_{ℓ}


Novel online learning (decide action λ_ℓ & pred costs simultaneously via fixed-point subroutine; named **O-FTRL-FP**)

Issue: Circular Dependency

- Yield λ_{ℓ} as-if true costs = pred costs
- Yield pred costs as-if true dual = λ_{ℓ}

Novel online learning (decide action λ_ℓ & pred costs simultaneously via fixed-point subroutine; named **O-FTRL-FP**) $\Longrightarrow \widetilde{\mathcal{O}}(\sqrt{T})$ regret

Issue: Circular Dependency

- Yield λ_{ℓ} as-if true costs = pred costs
- Yield pred costs as-if true dual = λ_{ℓ}

Novel online learning (decide action λ_ℓ & pred costs simultaneously via fixed-point subroutine; named O-FTRL-FP) $\Longrightarrow \widetilde{\mathcal{O}}(\sqrt{T})$ regret

Recall. Non-strategic lower bound = $\Omega(\sqrt{T})$ regret

Main Results & Takeaway

Main Result

1st dynamic mechanism resolving trilemma:

- ullet Efficiency. Optimal $\widetilde{\mathcal{O}}(\sqrt{T})$ regret
- Feasibility. Zero constraint violation
- Incentives. Robust to strategic agents

Key Techniques

- Primal Side: Incentive-Aware Allocation. Novel mixture of dual-adjusted pricing + lazy updates + random exploration
- Dual Side: Online Learning for Updates. Truthfulness ⇒
 Predictability + novel framework for circular dependencies

Questions are more than welcomed!

☑ yandai20@mit.edu; ♦ https://yandaichn.github.io/