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Primal Allocations

: Pricing + Epoching + Exploration

Manipulate vt,i

Alter it

Distort λt+1 Affect it+1

Vicious Cycle!

Vicious Cycle!

1 Dual-Adjusted Pricing. VCG-like rule (adapted for λ)

=⇒ truth dominates (for static setups)

2 Epoch-Based Lazy Updates. Fix λ for
√

T rounds

=⇒ hard to affect future (but not impossible)

3 Randomized Exploration. Misreport means harm

=⇒ ∃ near-truthful equilibrium (if harm ≥ gain)

Theorem. Õ(1) misreports & Õ(1) misallocations per epoch
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Dual Updates

: Online Learning gives Õ(T 2/3)

Efficiency

IncentivesFeasibility

3
Ingredients

T 2/3

Dynamically tune λ1,λ2, . . . according to costs

Theorem 1: Sublinear Regret ✓
3 ingredients (primal) + GD / FTRL (dual)
=⇒ Õ(T 2/3) regret (“no-regret” guarantee)

Can we do better?
Lazy updates good for primal (less incentives & ablities)
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(cannot react to ct,it promptly)
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Theorem. “Low-switching online learning” has Ω(T 2/3) regret
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Efficiency

IncentivesFeasibility

3
Ingredients

T 2/3

Dynamically tune λ1,λ2, . . . according to costs

Theorem 1: Sublinear Regret ✓
3 ingredients (primal) + GD / FTRL (dual)
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Efficiency

IncentivesFeasibility

3
IngredientsT 2/3

Dynamically tune λ1,λ2, . . . according to costs

Theorem 1: Sublinear Regret ✓
3 ingredients (primal) + GD / FTRL (dual)
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Efficiency

IncentivesFeasibility

3
IngredientsT 2/3

Dynamically tune λ1,λ2, . . . according to costs

Theorem 1: Sublinear Regret ✓
3 ingredients (primal) + GD / FTRL (dual)
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Dual Updates: Even Better via Predictability

Start of Epoch ℓ

Past costs Action λℓLazy FTRL Ω(T 2/3) regret

Pred costs
Optimistic FTRL Circular depOur Framework Õ(

√
T ) regret
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Key Insight: (Almost-)Truthfulness =⇒ Predictability

1 Truthful =⇒ iid future cost ct,it (it ≈ argmaxi(vt,i − λT
ℓ ct,i))

2 Truthful =⇒ reliable history (for distributions Vi and Ci)
=⇒ Predict new costs for better action λℓ
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√
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Issue: Circular Dependency
Yield λℓ as-if true costs = pred costs

Yield pred costs as-if true dual = λℓ

Novel online learning (decide action λℓ & pred costs simultaneously
via fixed-point subroutine; named O-FTRL-FP) =⇒ Õ(

√
T ) regret

Recall. Non-strategic lower bound = Ω(
√

T ) regret
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Main Results & Takeaway

Main Result
1st dynamic mechanism resolving trilemma:

Efficiency. Optimal Õ(
√

T ) regret
Feasibility. Zero constraint violation
Incentives. Robust to strategic agents

Efficiency

IncentivesFeasibility

No
ve

l O
nli

ne
Le

ar
nin

g Incentive-Aware
Alloc

✓

Key Techniques
Primal Side: Incentive-Aware Allocation. Novel mixture of
dual-adjusted pricing + lazy updates + random exploration
Dual Side: Online Learning for Updates. Truthfulness ⇒
Predictability + novel framework for circular dependencies

Questions are more than welcomed!
yandai20@mit.edu; https://yandaichn.github.io/

Yan Dai, Negin Golrezaei, Patrick Jaillet (MIT) Resource Allocation under Incentives & Constraints


	Introduction
	Efficiency-Feasibility-Incentives Trilemma
	Vicious Cycle in Classical Primal-Dual

	Our Solution
	Primal Allocations
	Dual Updates

	Appendix

