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Sharpness-Aware Minimization (SAM)

* Introduced by Foret et al. [2021] that performs sequential updates to loss function L:

pVL(w;)

”VL(;/Vt)HZ

Normalization Factor

Wip1 = We — nVL (Wt + ),Vt — 1,2, (1)

* Very impressive performance in training deep neural networks to generalize well
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Theoretical analyses were conducted towards characterizing SAM dynamics & properties,

while most of them removes normalization [ Andriushchenko & Flammarion; 2022] as:
Wegr = wy — nVL(w; + pVL(wy)), Ve = 1,2, ... (2)

The simplified version (Unnormalized SAM, or USAM) gives elegant theoretical results



Sharpness-Aware Minimization (SAM)

Introduced by Foret et al. [2021] that performs sequential updates to loss function L:

pVL(w;)
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Normalization Factor

Wip1 = We — UVL (Wt + ),Vt — 1,2, (1)

Very impressive performance in training deep neural networks to generalize well

Theoretical analyses were conducted towards characterizing SAM dynamics & properties,

while most of them removes normalization [ Andriushchenko & Flammarion; 2022] as:
Wegr = wy — nVL(w; + pVL(wy)), Ve = 1,2, ... (2)

The simplified version (Unnormalized SAM, or USAM) gives elegant theoretical results

Question: What’s the role of normalization (i.e., factor 1/||VL(w;)]||) in SAM update (1)?
* In other words... Whether the simplification in (2) can be safely adopted to simplify analysis?



Motivating Experiments

* Setup: over-parameterized matrix sensing problem [Li1 et al., 2018]

Same initialization (far from minimum);

Fix n (for which GD works) & adjust p

SAM is much more stable than USAM!

Same initialization (near minimum)
USAM gets stuck -- just like GD
SAM w/ diff p finds same minimum
(believed to be good for generalization
[Bartlett et al., 2022; Wen et al., 2023])
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Motivating Experiments

* Setup: over-parameterized matrix sensing problem [Li1 et al., 2018]

* Normalization helps with stability

Same initialization (far from minimum);

Fix n (for which GD works) & adjust p

SAM is much more stable than USAM!

Same initialization (near minimum)
USAM gets stuck -- just like GD
SAM w/ diff p finds same minimum
(believed to be good for generalization
[Bartlett et al., 2022; Wen et al., 2023])
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Theoretical Results (Informal)

(more empirical results are contained in our paper)

* Normalization helps with stability

* Normalization permits moving along minima
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(more empirical results are contained in our paper)

* Normalization helps with stability: a “large” p causes USAM to diverge

* Theorem 1. For strongly convex & smooth L, SAM converges w/ configuration (1, p) as
long asn < 2/ (i.e., GD converges), but USAM diverges a.s. ifn > 2/ (B + pB?)!

* Theorem 2. For scalar factorization L(x,y) = (xy?)/2 withn = 0(1), SAM finds an
O(p)-neighborhood of (0,0) when p = 0(1), but USAM diverges once p = 1 = o(1)!

* Normalization permits moving along minima



Theoretical Results (Informal)

(more empirical results are contained in our paper)
Normalization helps with stability: a “large” p causes USAM to diverge

Theorem 1. For strongly convex & smooth L, SAM converges w/ configuration (17, p) as
long asn < 2/ (i.e., GD converges), but USAM diverges a.s. ifn > 2/ (B + pB?)!

Theorem 2. For scalar factorization L(x,y) = (xy*)/2 withn = 0(1), SAM finds an
O(p)-neighborhood of (0,0) when p = O(1), but USAM diverges once p = 171 = 0(1)!
Normalization permits moving along minima: a “small” p makes USAM stuck

Theorems 3-5. For single-neuron linear net L(x,y) = €(xy) [Ahn et al., 2023a] inited @
(X0, Vo), GD finds (0, ys) W/ 2 = min(yé — x&,2/n) [Ahn et al., 2023a] (so y2%, > 0),
USAM finds (0, y,) W/ (1 + py2)y2 ~ 2/n (again y% > 0), SAM finds y2% = o(1)!
Theorem 6. For PL & smooth L, the distance USAM travels along manifold is bounded!
Main Takeaway: USAM is sensitive to (1, p)-choice & behaves differently from SAM!
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