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• Adversarial MDP: MDP with time-varying losses ℓ!,#(𝑠, 𝑎) but stationary transitions ℙ# 𝑠$ 𝑠, 𝑎)
• Linear-Q AMDP: AMDP with linear Q-function 𝑄!,#% 𝑠, 𝑎 = ℓ!,# 𝑠, 𝑎 + 𝔼%[𝑄!,#&'% (𝑠$, 𝑎$)]

• That is, 𝑄!,#$ 𝑠, 𝑎 = ⟨𝜙 𝑠, 𝑎 , 𝜃!,#$ ⟩ where 𝜙 𝑠, 𝑎 ∈ ℝ% is known and stationary but 𝜃!,#$ is unknown

• Linear AMDP: Linear-Q AMDP with linear transitions: ℙ# 𝑠$ 𝑠, 𝑎) = ⟨𝜙 𝑠, 𝑎 , 𝜈 𝑠$ ⟩
• Regret: Expected difference between losses collected by 𝜋! !('

) and a stationary comparator 𝜋∗
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Assumption Regret

Luo et al. (2021)
None 3𝒪(𝑑+/-𝐻+𝐾+/-)

Exploratory Policy 𝝅𝟎 3𝒪(poly(𝑑, 𝐻) 𝐾/𝜆. '/+)
This paper None "𝒪(𝐴"/$𝑑"/$𝐻%𝐾"/$)
This paper None "𝒪(𝐴"/$𝑑"/$𝐻%𝐾"/$)

Table 1: Comparison with related works on Linear-Q AMDPs (with a simulator); !𝒪 hides all logarithmic factors
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Technical Overview
• Refined Analysis of FTRL w/ Log-Barrier on arbitrary loss vectors ℓ& ∈ ℝ' &()

* : (no longer require ℓ𝒕,𝒊 ≥ −𝟏/𝜼!)

Actions 𝑥& ∈ ∆ '
&()
*

are de8ined as:, 𝑥& = arg min
-∈∆["]

𝜂 𝑥, ?
&$0&

ℓ&$ +Ψ 𝑥 , where Ψ 𝑥 =?
1()

'

ln
1
𝑥1
.

• Then the following holds for any comparator 𝑦 ∈ ∆[']:

?
&()

*

⟨𝑥& − 𝑦, ℓ&⟩ ≤
Ψ y − Ψ 𝑥)

𝜂
+ 𝜂?

&()

*

?
1()

'

𝑥&,1ℓ&,14 .

• Magnitude Reduced Estimator: For an arbitrary random variable 𝑍 that can be prohibitively negative, define
M𝑍 = 𝑍 − 𝑍 5 + 𝔼 𝑍 5 , where 𝑍 5 = min 𝑍, 0 .

• Then our Magnitude Reduced Estimator M𝑍 enjoys the following properties:
• Preserve Expectation: 𝔼 ,𝑍 = 𝔼 𝑍 − 𝔼 𝑍 ! + 𝔼 𝑍 ! = 𝔼 𝑍 .
• Similar Second Order Moment: 𝔼 ,𝑍" ≤ 2𝔼 𝑍" + 2 𝔼 𝑍 !

" = 𝒪 𝔼 𝑍" .
• Bounded from Below: ,𝑍 ≥ 𝔼 𝑍 ! as 𝑍 − 𝑍 ! = 0 when 𝑍 < 0 and 𝑍 − 𝑍 ! = 𝑍 ≥ 0 when 𝑍 ≥ 0. 

• New Covariance Estimation Bound: For a 𝑑-dim’l distribution w/ covariance Σ, samples 𝜙1 1()6 ensures (w.p. 1 − 𝛿):
1Σ!

"/$
𝛾𝐼 + Σ 1Σ!

"/$
∈ 1 − 2 𝛾 𝐼, 1 + 2 𝛾 𝐼 , where 1Σ! = 𝛾𝐼 +?

%&"

'
𝜙%𝜙%(

)"

, given𝑊 ≥ 4𝑑log
𝑑
𝛿
𝛾)$.
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Thank You for Listening!
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