

Refined Regret for Adversarial MDPs with Linear Function Approximation

Yan Dai¹, Haipeng Luo², Chen-Yu Wei³, Julian Zimmert⁴

¹ IIIS, Tsinghua University² University of Southern California³ IDSS, MIT⁴ Google Research

Presented by Yan Dai

• Adversarial MDP: MDP with *time-varying* losses $\ell_{k,h}(s, a)$ but *stationary* transitions $\mathbb{P}_h(s'|s, a)$

- Adversarial MDP: MDP with *time-varying* losses $\ell_{k,h}(s, a)$ but *stationary* transitions $\mathbb{P}_h(s'|s, a)$
- Linear-Q AMDP: AMDP with <u>linear</u> Q-function $Q_{k,h}^{\pi}(s,a) = \ell_{k,h}(s,a) + \mathbb{E}_{\pi}[Q_{k,h+1}^{\pi}(s',a')]$

- Adversarial MDP: MDP with *time-varying* losses $\ell_{k,h}(s, a)$ but *stationary* transitions $\mathbb{P}_h(s'|s, a)$
- Linear-Q AMDP: AMDP with <u>linear</u> Q-function $Q_{k,h}^{\pi}(s,a) = \ell_{k,h}(s,a) + \mathbb{E}_{\pi}[Q_{k,h+1}^{\pi}(s',a')]$
 - That is, $Q_{k,h}^{\pi}(s,a) = \langle \phi(s,a), \theta_{k,h}^{\pi} \rangle$ where $\phi(s,a) \in \mathbb{R}^d$ is <u>known and stationary</u> but $\theta_{k,h}^{\pi}$ is <u>unknown</u>

- Adversarial MDP: MDP with <u>time-varying</u> losses $\ell_{k,h}(s,a)$ but <u>stationary</u> transitions $\mathbb{P}_h(s'|s,a)$
- Linear-Q AMDP: AMDP with <u>linear</u> Q-function $Q_{k,h}^{\pi}(s,a) = \ell_{k,h}(s,a) + \mathbb{E}_{\pi}[Q_{k,h+1}^{\pi}(s',a')]$
 - That is, $Q_{k,h}^{\pi}(s,a) = \langle \phi(s,a), \theta_{k,h}^{\pi} \rangle$ where $\phi(s,a) \in \mathbb{R}^d$ is <u>known and stationary</u> but $\theta_{k,h}^{\pi}$ is <u>unknown</u>
- Linear AMDP: Linear-Q AMDP with <u>linear</u> transitions: $\mathbb{P}_h(s'|s, a) = \langle \phi(s, a), v(s') \rangle$

- Adversarial MDP: MDP with *time-varying* losses $\ell_{k,h}(s, a)$ but *stationary* transitions $\mathbb{P}_h(s'|s, a)$
- Linear-Q AMDP: AMDP with <u>linear</u> Q-function $Q_{k,h}^{\pi}(s,a) = \ell_{k,h}(s,a) + \mathbb{E}_{\pi}[Q_{k,h+1}^{\pi}(s',a')]$
 - That is, $Q_{k,h}^{\pi}(s,a) = \langle \phi(s,a), \theta_{k,h}^{\pi} \rangle$ where $\phi(s,a) \in \mathbb{R}^d$ is <u>known and stationary</u> but $\theta_{k,h}^{\pi}$ is <u>unknown</u>
- Linear AMDP: Linear-Q AMDP with <u>linear</u> transitions: $\mathbb{P}_h(s'|s, a) = \langle \phi(s, a), v(s') \rangle$
- **Regret**: Expected difference between losses collected by $\{\pi_k\}_{k=1}^K$ and a stationary comparator π^*

	Assumption	Regret
Luo et al. (2021)	None	$\tilde{\mathcal{O}}(d^{2/3}H^2 \frac{K^{2/3}}{K^2})$
This paper	None	$\tilde{O}(A^{1/2}d^{1/2}H^3K^{1/2})$

Table 1: Comparison with related works on Linear-Q AMDPs (with a simulator); \tilde{O} hides all logarithmic factors

- Adversarial MDP: MDP with *time-varying* losses $\ell_{k,h}(s, a)$ but *stationary* transitions $\mathbb{P}_h(s'|s, a)$
- Linear-Q AMDP: AMDP with <u>linear</u> Q-function $Q_{k,h}^{\pi}(s,a) = \ell_{k,h}(s,a) + \mathbb{E}_{\pi}[Q_{k,h+1}^{\pi}(s',a')]$
 - That is, $Q_{k,h}^{\pi}(s,a) = \langle \phi(s,a), \theta_{k,h}^{\pi} \rangle$ where $\phi(s,a) \in \mathbb{R}^d$ is <u>known and stationary</u> but $\theta_{k,h}^{\pi}$ is <u>unknown</u>
- Linear AMDP: Linear-Q AMDP with <u>linear</u> transitions: $\mathbb{P}_h(s'|s, a) = \langle \phi(s, a), v(s') \rangle$
- **Regret**: Expected difference between losses collected by $\{\pi_k\}_{k=1}^K$ and a stationary comparator π^*

	Assumption	Regret
Luo et al. (2021)	None	$\tilde{\mathcal{O}}(d^{2/3}H^2K^{2/3})$
	Exploratory Policy π_0	$\tilde{\mathcal{O}}(\operatorname{poly}(d,H)(K/\lambda_0)^{1/2})$
This paper	None	$\tilde{O}(A^{1/2}d^{1/2}H^3K^{1/2})$

Table 1: Comparison with related works on Linear-Q AMDPs (with a simulator); \tilde{O} hides all logarithmic factors

- Adversarial MDP: MDP with <u>time-varying</u> losses $\ell_{k,h}(s,a)$ but <u>stationary</u> transitions $\mathbb{P}_h(s'|s,a)$
- Linear-Q AMDP: AMDP with <u>linear</u> Q-function $Q_{k,h}^{\pi}(s,a) = \ell_{k,h}(s,a) + \mathbb{E}_{\pi}[Q_{k,h+1}^{\pi}(s',a')]$
 - That is, $Q_{k,h}^{\pi}(s,a) = \langle \phi(s,a), \theta_{k,h}^{\pi} \rangle$ where $\phi(s,a) \in \mathbb{R}^d$ is <u>known and stationary</u> but $\theta_{k,h}^{\pi}$ is <u>unknown</u>
- Linear AMDP: Linear-Q AMDP with <u>linear</u> transitions: $\mathbb{P}_h(s'|s, a) = \langle \phi(s, a), v(s') \rangle$
- **Regret**: Expected difference between losses collected by $\{\pi_k\}_{k=1}^K$ and a stationary comparator π^*

	Assumption	Regret
Luo et al. (2021)	None	$\tilde{\mathcal{O}}(d^{2/3}H^2K^{2/3})$
	Exploratory Policy π_0	$\tilde{\mathcal{O}}(\operatorname{poly}(d,H)(K/\lambda_0)^{1/2})$
This paper	None	$\tilde{\mathcal{O}}(A^{1/2}d^{1/2}H^3K^{1/2})$

Table 1: Comparison with related works on Linear-Q AMDPs (with a simulator); \tilde{O} hides all logarithmic factors

- Adversarial MDP: MDP with <u>time-varying</u> losses $\ell_{k,h}(s,a)$ but <u>stationary</u> transitions $\mathbb{P}_h(s'|s,a)$
- Linear-Q AMDP: AMDP with <u>linear</u> Q-function $Q_{k,h}^{\pi}(s,a) = \ell_{k,h}(s,a) + \mathbb{E}_{\pi}[Q_{k,h+1}^{\pi}(s',a')]$
 - That is, $Q_{k,h}^{\pi}(s,a) = \langle \phi(s,a), \theta_{k,h}^{\pi} \rangle$ where $\phi(s,a) \in \mathbb{R}^d$ is <u>known and stationary</u> but $\theta_{k,h}^{\pi}$ is <u>unknown</u>
- Linear AMDP: Linear-Q AMDP with <u>linear</u> transitions: $\mathbb{P}_h(s'|s, a) = \langle \phi(s, a), v(s') \rangle$
- **Regret**: Expected difference between losses collected by $\{\pi_k\}_{k=1}^K$ and a stationary comparator π^*

	Assumption	Regret
Luo et al. (2021)	None	$\tilde{\mathcal{O}}(d^{2/3}H^2 \frac{K^{2/3}}{K^2})$
	Exploratory Policy π_0	$\tilde{\mathcal{O}}(\operatorname{poly}(d,H)(K/\lambda_0)^{1/2})$
This paper	None	$\tilde{\mathcal{O}}(A^{1/2}d^{1/2}H^3K^{1/2})$
This paper	None	$\tilde{\mathcal{O}}(d^{1/2}H^3K^{1/2})$

Table 1: Comparison with related works on Linear-Q AMDPs (with a simulator); \tilde{O} hides all logarithmic factors

- Adversarial MDP: MDP with *time-varying* losses $\ell_{k,h}(s, a)$ but *stationary* transitions $\mathbb{P}_h(s'|s, a)$
- Linear-Q AMDP: AMDP with <u>linear</u> Q-function $Q_{k,h}^{\pi}(s,a) = \ell_{k,h}(s,a) + \mathbb{E}_{\pi}[Q_{k,h+1}^{\pi}(s',a')]$
 - That is, $Q_{k,h}^{\pi}(s,a) = \langle \phi(s,a), \theta_{k,h}^{\pi} \rangle$ where $\phi(s,a) \in \mathbb{R}^d$ is <u>known and stationary</u> but $\theta_{k,h}^{\pi}$ is <u>unknown</u>
- Linear AMDP: Linear-Q AMDP with <u>linear</u> transitions: $\mathbb{P}_h(s'|s, a) = \langle \phi(s, a), v(s') \rangle$
- **Regret**: Expected difference between losses collected by $\{\pi_k\}_{k=1}^K$ and a stationary comparator π^*

	Assumption	Regret
Neu & Olkhovskaya (2021)	Known Transition	$\tilde{\mathcal{O}}(\operatorname{poly}(d,H)(K/\lambda_0)^{1/2})$
	Exploratory Policy π_0	$\tilde{O}(\operatorname{poly}(d,H)(K/\lambda_0)^{6/7})$

Table 2: Comparison with related works on Linear AMDPs (without a simulator); \tilde{O} hides all logarithmic factors

- Adversarial MDP: MDP with <u>time-varying</u> losses $\ell_{k,h}(s,a)$ but <u>stationary</u> transitions $\mathbb{P}_h(s'|s,a)$
- Linear-Q AMDP: AMDP with <u>linear</u> Q-function $Q_{k,h}^{\pi}(s,a) = \ell_{k,h}(s,a) + \mathbb{E}_{\pi}[Q_{k,h+1}^{\pi}(s',a')]$
 - That is, $Q_{k,h}^{\pi}(s,a) = \langle \phi(s,a), \theta_{k,h}^{\pi} \rangle$ where $\phi(s,a) \in \mathbb{R}^d$ is <u>known and stationary</u> but $\theta_{k,h}^{\pi}$ is <u>unknown</u>
- Linear AMDP: Linear-Q AMDP with <u>linear</u> transitions: $\mathbb{P}_h(s'|s, a) = \langle \phi(s, a), v(s') \rangle$
- **Regret**: Expected difference between losses collected by $\{\pi_k\}_{k=1}^K$ and a stationary comparator π^*

1	`	
	Assumption	Regret
Neu & Olkhovskaya (2021)	Known Transition & Exploratory Policy π_0	$\tilde{\mathcal{O}}(\mathrm{poly}(d,H)(K/\lambda_0)^{1/2})$
	Exploratory Policy π_0	$\widetilde{\mathcal{O}}(\operatorname{poly}(d,H)(K/\lambda_0)^{6/7})$

Table 2: Comparison with related works on Linear AMDPs (without a simulator); \tilde{O} hides all logarithmic factors

- Adversarial MDP: MDP with <u>time-varying</u> losses $\ell_{k,h}(s,a)$ but <u>stationary</u> transitions $\mathbb{P}_h(s'|s,a)$
- Linear-Q AMDP: AMDP with <u>linear</u> Q-function $Q_{k,h}^{\pi}(s,a) = \ell_{k,h}(s,a) + \mathbb{E}_{\pi}[Q_{k,h+1}^{\pi}(s',a')]$
 - That is, $Q_{k,h}^{\pi}(s,a) = \langle \phi(s,a), \theta_{k,h}^{\pi} \rangle$ where $\phi(s,a) \in \mathbb{R}^d$ is <u>known and stationary</u> but $\theta_{k,h}^{\pi}$ is <u>unknown</u>
- Linear AMDP: Linear-Q AMDP with <u>linear</u> transitions: $\mathbb{P}_h(s'|s, a) = \langle \phi(s, a), v(s') \rangle$
- **Regret**: Expected difference between losses collected by $\{\pi_k\}_{k=1}^K$ and a stationary comparator π^*

	Assumption	Regret
Neu & Olkhovskaya (2021)	Known Transition & Exploratory Policy π_0	$\tilde{\mathcal{O}}(\mathrm{poly}(d,H)(K/\lambda_0)^{1/2})$
Luo et al. (2021)	None	$\tilde{\mathcal{O}}(d^2H^4 \frac{K^{14/15}}{K^{14/15}})$
	Exploratory Policy π_0	$\widetilde{\mathcal{O}}(\mathrm{poly}(d,H)(K/\lambda_0)^{6/7})$

Table 2: Comparison with related works on Linear AMDPs (without a simulator); \tilde{O} hides all logarithmic factors

- Adversarial MDP: MDP with *time-varying* losses $\ell_{k,h}(s, a)$ but *stationary* transitions $\mathbb{P}_h(s'|s, a)$
- Linear-Q AMDP: AMDP with <u>linear</u> Q-function $Q_{k,h}^{\pi}(s,a) = \ell_{k,h}(s,a) + \mathbb{E}_{\pi}[Q_{k,h+1}^{\pi}(s',a')]$
 - That is, $Q_{k,h}^{\pi}(s,a) = \langle \phi(s,a), \theta_{k,h}^{\pi} \rangle$ where $\phi(s,a) \in \mathbb{R}^d$ is <u>known and stationary</u> but $\theta_{k,h}^{\pi}$ is <u>unknown</u>
- Linear AMDP: Linear-Q AMDP with <u>linear</u> transitions: $\mathbb{P}_h(s'|s, a) = \langle \phi(s, a), v(s') \rangle$
- **Regret**: Expected difference between losses collected by $\{\pi_k\}_{k=1}^K$ and a stationary comparator π^*

	Assumption	Regret
Neu & Olkhovskaya (2021)	Known Transition & Exploratory Policy π_0	$\tilde{\mathcal{O}}(\operatorname{poly}(d,H)(K/\lambda_0)^{1/2})$
Luo et al. (2021)	None	$\tilde{\mathcal{O}}(d^2H^4K^{14/15})$
	Exploratory Policy π_0	$\tilde{\mathcal{O}}(\operatorname{poly}(d,H)(K/\lambda_0)^{6/7})$

Table 2: Comparison with related works on Linear AMDPs (without a simulator); \tilde{O} hides all logarithmic factors

- Adversarial MDP: MDP with <u>time-varying</u> losses $\ell_{k,h}(s,a)$ but <u>stationary</u> transitions $\mathbb{P}_h(s'|s,a)$
- Linear-Q AMDP: AMDP with <u>linear</u> Q-function $Q_{k,h}^{\pi}(s,a) = \ell_{k,h}(s,a) + \mathbb{E}_{\pi}[Q_{k,h+1}^{\pi}(s',a')]$
 - That is, $Q_{k,h}^{\pi}(s,a) = \langle \phi(s,a), \theta_{k,h}^{\pi} \rangle$ where $\phi(s,a) \in \mathbb{R}^d$ is <u>known and stationary</u> but $\theta_{k,h}^{\pi}$ is <u>unknown</u>
- Linear AMDP: Linear-Q AMDP with <u>linear</u> transitions: $\mathbb{P}_h(s'|s, a) = \langle \phi(s, a), v(s') \rangle$
- **Regret**: Expected difference between losses collected by $\{\pi_k\}_{k=1}^K$ and a stationary comparator π^*

	Assumption	Regret
Neu & Olkhovskaya (2021)	Known Transition & Exploratory Policy π_0	$\tilde{\mathcal{O}}(\mathrm{poly}(d,H)(K/\lambda_0)^{1/2})$
Luo et al. (2021)	None	$\tilde{\mathcal{O}}(d^2 H^4 \frac{K^{14/15}}{K^{14/15}})$
	Exploratory Policy π_0	$\tilde{\mathcal{O}}(\operatorname{poly}(d,H)(K/\lambda_0)^{6/7})$
This paper	None	$\tilde{\mathcal{O}}(\operatorname{poly}(d, A, H)K^{8/9})$

Table 2: Comparison with related works on Linear AMDPs (without a simulator); \tilde{O} hides all logarithmic factors

• Refined Analysis of FTRL w/ Log-Barrier on arbitrary loss vectors $\{\ell_t \in \mathbb{R}^A\}_{t=1}^T$: (no longer require $\ell_{t,i} \ge -1/\eta!$) Actions $\{x_t \in \Delta^{[A]}\}_{t=1}^T$ are defined as: $x_t = \underset{x \in \Delta^{[A]}}{\arg\min} \left\{ \eta \left\langle x, \sum_{t' < t} \ell_{t'} \right\rangle + \Psi(x) \right\}$, where $\Psi(x) = \sum_{i=1}^{T} \ln \frac{1}{x_i}$.

Then the following holds for any comparator $y \in \Delta^{[A]}$:

$$\sum_{t=1}^{T} \langle x_t - y, \ell_t \rangle \le \frac{\Psi(y) - \Psi(x_1)}{\eta} + \eta \sum_{t=1}^{T} \sum_{i=1}^{A} x_{t,i} \ell_{t,i}^2.$$

• Refined Analysis of FTRL w/ Log-Barrier on arbitrary loss vectors $\{\ell_t \in \mathbb{R}^A\}_{t=1}^T$: (no longer require $\ell_{t,i} \ge -1/\eta!$) Actions $\{x_t \in \Delta^{[A]}\}_{t=1}^T$ are defined as: $x_t = \underset{x \in \Delta^{[A]}}{\arg\min} \left\{ \eta \left\langle x, \sum_{t' < t} \ell_{t'} \right\rangle + \Psi(x) \right\}$, where $\Psi(x) = \sum_{i=1}^{T} \ln \frac{1}{x_i}$.

Then the following holds for any comparator $y \in \Delta^{[A]}$:

$$\sum_{t=1}^{T} \langle x_t - y, \ell_t \rangle \leq \frac{\Psi(y) - \Psi(x_1)}{\eta} + \eta \sum_{t=1}^{T} \sum_{i=1}^{A} x_{t,i} \ell_{t,i}^2.$$

• Magnitude Reduced Estimator: For an arbitrary random variable Z that can be prohibitively negative, define $\hat{Z} = Z - (Z)_{-} + \mathbb{E}[(Z)_{-}], \quad \text{where } (Z)_{-} = \min (Z, 0).$

Then our Magnitude Reduced Estimator \hat{Z} enjoys the following properties:

- <u>Preserve Expectation</u>: $\mathbb{E}[\hat{Z}] = \mathbb{E}[Z] \mathbb{E}[(Z)_{-}] + \mathbb{E}[(Z)_{-}] = \mathbb{E}[Z].$
- <u>Similar Second Order Moment</u>: $\mathbb{E}[\hat{Z}^2] \le 2\mathbb{E}[Z^2] + 2(\mathbb{E}[(Z)_-])^2 = \mathcal{O}(\mathbb{E}[Z^2]).$
- Bounded from Below: $\hat{Z} \ge \mathbb{E}[(Z)_{-}]$ as $Z (Z)_{-} = 0$ when Z < 0 and $Z (Z)_{-} = Z \ge 0$ when $Z \ge 0$.

• Refined Analysis of FTRL w/ Log-Barrier on arbitrary loss vectors $\{\ell_t \in \mathbb{R}^A\}_{t=1}^T$: (no longer require $\ell_{t,i} \ge -1/\eta!$) Actions $\{x_t \in \Delta^{[A]}\}_{t=1}^T$ are defined as: $x_t = \underset{x \in \Delta^{[A]}}{\arg\min} \left\{ \eta \left\langle x, \sum_{t' < t} \ell_{t'} \right\rangle + \Psi(x) \right\}$, where $\Psi(x) = \sum_{i=1}^{T} \ln \frac{1}{x_i}$.

Then the following holds for any comparator $y \in \Delta^{[A]}$:

$$\sum_{t=1}^{T} \langle x_t - y, \ell_t \rangle \leq \frac{\Psi(y) - \Psi(x_1)}{\eta} + \eta \sum_{t=1}^{T} \sum_{i=1}^{A} x_{t,i} \ell_{t,i}^2.$$

• Magnitude Reduced Estimator: For an arbitrary random variable Z that can be prohibitively negative, define $\hat{Z} = Z - (Z)_{-} + \mathbb{E}[(Z)_{-}], \quad \text{where } (Z)_{-} = \min (Z, 0).$

Then our Magnitude Reduced Estimator \hat{Z} enjoys the following properties:

- <u>Preserve Expectation</u>: $\mathbb{E}[\hat{Z}] = \mathbb{E}[Z] \mathbb{E}[(Z)_{-}] + \mathbb{E}[(Z)_{-}] = \mathbb{E}[Z].$
- <u>Similar Second Order Moment</u>: $\mathbb{E}[\hat{Z}^2] \le 2\mathbb{E}[Z^2] + 2(\mathbb{E}[(Z)_-])^2 = \mathcal{O}(\mathbb{E}[Z^2]).$
- Bounded from Below: $\hat{Z} \ge \mathbb{E}[(Z)_{-}]$ as $Z (Z)_{-} = 0$ when Z < 0 and $Z (Z)_{-} = Z \ge 0$ when $Z \ge 0$.
- New Covariance Estimation Bound: For a *d*-dim'l distribution *w*/ covariance Σ , samples $\{\phi_i\}_{i=1}^W$ ensures (w.p. 1δ): $(\hat{\Sigma}^+)^{1/2}(\gamma I + \Sigma)(\hat{\Sigma}^+)^{1/2} \in [(1 - 2\sqrt{\gamma})I, (1 + 2\sqrt{\gamma})I], \quad \text{where } \hat{\Sigma}^+ = (\gamma I + \sum_{i=1}^W \phi_i \phi_i^T)^{-1}, \quad \text{given } W \ge (4d\log\frac{d}{\delta})\gamma^{-2}.$

Thank You for Listening!

Email: yan-dai20@mails.tsinghua.edu.cn

References

• Haipeng Luo, Chen-Yu Wei, and Chung-Wei Lee. Policy optimization in adversarial mdps: Improved exploration via dilated bonuses. Advances in Neural Information Processing Systems, 34:22931–22942, 2021.

• Gergely Neu and Julia Olkhovskaya. Online learning in mdps with linear function approximation and bandit feedback. Advances in Neural Information Processing Systems, 34: 10407–10417, 2021.

