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 Magnitude Reduced Estimator: For an arbitrary random variable Z that can be prohibitively negative, define
Z=72-(Z)_+E[(Z)_], where(Z)_ =min (Z,0).

Then our Magnitude Reduced Estimator Z enjoys the following properties:
»  Preserve Expectation: E[Z] = E[Z] — E[(Z)_] + E[(2)_] = E[Z].
«  Similar Second Order Moment: E[Z2] < 2E[Z2] + 2(E[(Z)_])? = O(E[Z2]).
« Bounded from Below: Z > E[(Z)_]asZ—(Z)_=0whenZ <0andZ— (Z)_=Z > 0whenZ > 0.
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* New Covariance Estimation Bound: For a d-dim’] distribution w/ covariance X, samples {¢; } —, ensures (w.p. 1 —d):

(2+) ( 1+ 2)(2+) e[(1-2yY), (1 +2y¥)I], wherel* = (yl + Z ONOY ) ,  givenW > (4dlog%) Y2
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