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Adversarial Markov Decision Process (AMDP)

Algorithm Interaction Protocol in AMDP
1: for #episode k = 1, 2, . . . ,K do
2: Agent reset to an initial state s1 ∈ S1 ▷ Let S = S1 ∪ S2 ∪ · · · ∪ SH+1.
3: for #step h = 1, 2, . . . ,H do
4: Agent picks an action ah ∈ A ▷ Sample from policy πk : S → △(A).
5: Agent observes loss ℓk,h(sh , ah) ▷ Loss ℓ depends on #episode k!
6: Agent transits to sh+1 ∼ P(· | sh , ah) ▷ Transition P independent to k.

Agent essentially decides K policies {πk : S → △(A)}K
k=1.
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Agent’s Goal?
For the k-th episode, define V-function of policy π : S → △(A) as

V π
k (s1) = E

[ H∑
h=1

ℓk(sh , ah)

∣∣∣∣∣ah ∼ πk(· | sh), sh+1 ∼ P(· | sh , ah)

]
.

The agent minimizes the expected total loss E[
∑K

k=1 V πk
k (s1)]. Or

equivalently, minimize the total regret:

RK ≜ E

[ K∑
k=1

V πk
k (s1)

]
− min

π∗ : S→△(A)

{ K∑
k=1

V π∗
k (s1)

}
.

Full Information Bandit Feedback
Known Transition Õ(H

√
K) [Zimin and Neu, 2013] Õ(

√
HSA

√
K) [Zimin and Neu, 2013]

Unknown Transition Õ(HS
√

A
√

K) [Rosenberg and Mansour, 2019] Õ(HS
√

A
√

K) [Jin et al., 2020]

Table: Previous Results on AMDP (w/o Function Approximation)
(K : No. of episodes; H : No. of steps; S : Size of S; A: Size of A)
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√
HSA

√
K) [Zimin and Neu, 2013]

Unknown Transition Õ(HS
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AMDP with Linear Function Approximation

What if S can be prohibitively large?

Linear-Q AMDP: ∀k ∈ [K ], π : S → △(A), s ∈ S, a ∈ A,

Qπ
k (s, a) ≜ ℓk(s, a) + E

s′∼P(·|s,a), a′∼π(·|s′)

[
Qπ

k (s′, a′)
]

is linear,

i.e., Qπ
k (s, a) = ⟨ϕ(s, a), θπk ⟩ where ϕ : S ×A → Rd is known.

Some stronger variants of Linear-Q AMDP:
Linear MDP. P(s′ | s, a) = ⟨ϕ(s, a), ν(s′)⟩ (ϕ known but ν unknown).
Linear-Mixture MDP. P(s′ | s, a) = ⟨ψ(s′ | s, a), ν⟩ (ψ known but ν unknown).
Linear Kernel MDP. P(s′ | s, a) = ⟨ϕ(s, a),M , ψ(s′)⟩ (ϕ, ψ known but M unknown).
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Previous Results on Linear-Q AMDPs

Setting Assumption Regret

Linear-Q AMDP
(with Simulator)

None Õ( d2/3H 2K2/3) [Luo et al., 2021a]

Exploratory Policy Õ(poly(d,H )(K/λ0)
1/2) [Luo et al., 2021a]

None Õ(A1/2d1/2H 3K1/2) (This paper!)

None Õ( d1/2H 3K1/2) (This paper!)

Table: Previous Results on Linear-Q AMDPs.
(d: Dim. of ϕ; A: Size of A; λ0: Property of exploratory policy.)

The first to get Õ(
√

K ) regret w/o additional assumptions!
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Previous Results on Other Variants

Setting Assumption Regret

Linear-Mixture AMDP
Full Information Õ(dHK1/2) [He et al., 2022]

None Õ(dS2K1/2 +
√

HSAK1/2) [Zhao et al., 2022]

Linear AMDP

Known Transition Õ(poly(d,H )(K/λ0)
1/2) [Neu and Olkhovskaya, 2021]

None Õ(d2H 4K14/15) [Luo et al., 2021b]

Exploratory Policy Õ(poly(d,H )(K/λ2/3
0 )6/7) [Luo et al., 2021a]

None Õ(poly(A, d,H )K8/9) (This paper!)

Table: Previous Results on Other Variants of Linear-Q AMDPs.
(d: Dim. of ϕ; A: Size of A; λ0: Property of exploratory policy.)

Greatly outperform previous works on Linear AMDPs!
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FTRL w/ Log-Barrier on Arbitrary Losses
Magnitude-Reduced Estimator for Any R.V.

Overview of Our Algorithms

3 Algorithms, 3 New Techniques.

1 Algorithm 1: Õ(
√

AdH 6K ) in Linear-Q AMDPs
FTRL w/ Log-Barrier on Arbitrary Losses.

2 Algorithm 2: Õ(
√

dH 6K ) in Linear-Q AMDPs
Magnitude-Reduced Estimator for Any Random Variable.

3 Algorithm 3: Õ(poly(A, d,H )K 8/9) in Linear AMDPs:
Relative Concentration Bounds for Stochastic Matrices.
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Recap of FTRL Framework

Follow-the-Regularized-Leader (FTRL) Framework: For any loss
estimation sequence {ℓ̂t}T

t=1, calculate actions {xt ∈ △(A)}T
t=1 as

xt = arg min
x∈△(A)

{
η

〈
x,

t−1∑
τ=1

ℓτ

〉
+Ψ(x)

}
, t = 1, 2, . . . ,T .

Lemma (Classical Regret Guarantee on FTRL; Informal)

For “good enough” Ψ and losses such that ℓ̂t,a ≥ −1/η for all
t = 1, 2, . . . ,T and a ∈ A, Eq. (1) holds for any fixed y ∈ △(A).

T∑
t=1

⟨xt − y, ℓ̂t⟩ ≤
Ψ(y)−Ψ(x1)

η
+ η

T∑
t=1

∑
a∈A

xt,a ℓ̂
2
t,a. (1)
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What’s the Issue?

In [Luo et al., 2021b], the final regret bound consists of

Õ
(
βK +

1
η
+
γ

β
K +

β

γ

)
,

where η is learning rate of FTRL, β is bonus coefficient, and γ is
regularization factor (so the estimated loss ℓ̂ ∈ [−γ−1, γ−1]).

How to get Õ(
√

K ) regret?

Set β = K−1/2 and η = K−1/2 =⇒ we need γ = K−1!
But... we also need ℓ̂ ≥ −1/η = −

√
K to ensure Eq. (1).

So we essentially need γ−1 ≤ η−1 – that’s why [Luo et al., 2021b]
set β = K−1/3, η = K−2/3, γ = K−2/3 for Õ(K 2/3) regret. §
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How to Resolve?

Lemma (Classical Regret Guarantee on FTRL; Informal)

For “good enough” Ψ and losses such that ℓ̂t,a ≥ −1/η for all
t = 1, 2, . . . ,T and a ∈ A, Eq. (1) holds for any fixed y ∈ △(A).

T∑
t=1

⟨xt − y, ℓ̂t⟩ ≤
Ψ(y)−Ψ(x1)

η
+ η

T∑
t=1

∑
a∈A

xt,a ℓ̂
2
t,a. (1)

Lemma (Our Regret Guarantee on FTRL; Informal)
For log-barrier Ψ (defined as Ψ(x) =

∑
a∈A ln x−1

a ) and any real
loss vectors ℓ1, ℓ2, . . . , ℓ̂t , Eq. (1) holds for any fixed y ∈ △(A).

In this way, we no longer need γ−1 ≤ η−1 and get the first-ever
Õ(K 1/2) regret via β = K−1/2, η = K−1/2, γ = K−1/2! ©
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FTRL w/ Log-Barrier on Arbitrary Losses
Magnitude-Reduced Estimator for Any R.V.

Downside of the Previous Approach?

We can only use the log-barrier regularizer Ψ(x) =
∑

a∈A ln x−1
a .

Compared to the original choice negative-entropy regularizer
Ψ(x) =

∑
a∈A xa ln xa, it has unavoidable poly(A) factors!

Lemma (Classical Regret Guarantee on FTRL; Informal)

For “good enough” Ψ and losses such that ℓ̂t,a ≥ −1/η for all
t = 1, 2, . . . ,T and a ∈ A, Eq. (1) holds for any fixed y ∈ △(A).

T∑
t=1

⟨xt − y, ℓ̂t⟩ ≤
Ψ(y)−Ψ(x1)

η
+ η

T∑
t=1

∑
a∈A

xt,a ℓ̂
2
t,a. (1)

Can we still use the original lemma (to use negative-entropy Ψ and
avoid poly(A)), but instead reducing the magnitude of ℓ̂? Yes!
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12/21

Introduction
Algorithm

FTRL w/ Log-Barrier on Arbitrary Losses
Magnitude-Reduced Estimator for Any R.V.

Downside of the Previous Approach?

We can only use the log-barrier regularizer Ψ(x) =
∑

a∈A ln x−1
a .

Compared to the original choice negative-entropy regularizer
Ψ(x) =

∑
a∈A xa ln xa, it has unavoidable poly(A) factors!

Lemma (Classical Regret Guarantee on FTRL; Informal)

For “good enough” Ψ and losses such that ℓ̂t,a ≥ −1/η for all
t = 1, 2, . . . ,T and a ∈ A, Eq. (1) holds for any fixed y ∈ △(A).
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FTRL w/ Log-Barrier on Arbitrary Losses
Magnitude-Reduced Estimator for Any R.V.

Magnitude-Reduced Estimator for Any R.V.

Lemma (Magnitude-Reduced Estimator; Informal)
For any random variable Z unbounded from below, the estimator

Ẑ ≜ Z − (Z )− + E[(Z )−] where (Z )− ≜ min{Z , 0} ensures

1 (Expectation Invariance) E[Ẑ ] = E[Z ];
2 (Same-Order 2nd Moment) E[Ẑ 2] ≤ 4E[Z 2];
3 (Bounded from Below) Ẑ ≥ E[(Z )−].

E[(Z )−] is much larger than the smallest possible value of Z .

Lemma
After applying the magnitude-reduced estimator to ℓ̂, the range of
ℓ̂ moves from [−γ−1, γ−1] to [−γ−1/2, γ−1]!

Yan Dai Adversarial Linear(-Q) MDPs



13/21

Introduction
Algorithm

FTRL w/ Log-Barrier on Arbitrary Losses
Magnitude-Reduced Estimator for Any R.V.

Magnitude-Reduced Estimator for Any R.V.

Lemma (Magnitude-Reduced Estimator; Informal)
For any random variable Z unbounded from below, the estimator
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FTRL w/ Log-Barrier on Arbitrary Losses
Magnitude-Reduced Estimator for Any R.V.

Magnitude-Reduced Estimator for Any R.V. (Cont’d)

Lemma
After applying the magnitude-reduced estimator to ℓ̂, the range of
ℓ̂ moves from [−γ−1, γ−1] to [−γ−1/2, γ−1]!

Lemma (Classical Regret Guarantee on FTRL; Informal)

For “good enough” Ψ and losses such that ℓ̂t,a ≥ −1/η for all
t = 1, 2, . . . ,T and a ∈ A, Eq. (1) holds for any fixed y ∈ △(A).

T∑
t=1

⟨xt − y, ℓ̂t⟩ ≤
Ψ(y)−Ψ(x1)

η
+ η

T∑
t=1

∑
a∈A

xt,a ℓ̂
2
t,a. (1)

=⇒ we only need γ−1/2 ≤ η−1 instead of γ−1 ≤ η−1!

Still setting β = K−1/2, η = K−1/2, γ = K−1/2 gives Õ(K 1/2)
regret & removes poly(A) (as we use negative-entropy Ψ)! ©

Yan Dai Adversarial Linear(-Q) MDPs



14/21

Introduction
Algorithm

FTRL w/ Log-Barrier on Arbitrary Losses
Magnitude-Reduced Estimator for Any R.V.

Magnitude-Reduced Estimator for Any R.V. (Cont’d)

Lemma
After applying the magnitude-reduced estimator to ℓ̂, the range of
ℓ̂ moves from [−γ−1, γ−1] to [−γ−1/2, γ−1]!

Lemma (Classical Regret Guarantee on FTRL; Informal)

For “good enough” Ψ and losses such that ℓ̂t,a ≥ −1/η for all
t = 1, 2, . . . ,T and a ∈ A, Eq. (1) holds for any fixed y ∈ △(A).

T∑
t=1

⟨xt − y, ℓ̂t⟩ ≤
Ψ(y)−Ψ(x1)

η
+ η

T∑
t=1

∑
a∈A

xt,a ℓ̂
2
t,a. (1)

=⇒ we only need γ−1/2 ≤ η−1 instead of γ−1 ≤ η−1!
Still setting β = K−1/2, η = K−1/2, γ = K−1/2 gives Õ(K 1/2)
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Summary

This paper studies AMDPs with Linear Function Approximation:
In Linear-Q AMDPs (with simulators), we achieve the
first-ever Õ(

√
K ) regret in two different ways:

1 Via new analysis for FTRL w/ Log-Barrier Regularizer.
Pro: Easy to use. No much modifications needed! ©
Con: Only log-barrier Ψ. Unavoidable poly(A) factors! §

2 Via applying magnitude-reduced estimators to ℓ̂.
Pro: Can use any regularizer, e.g., negative-entropy. ©
Con: E[(Z )−] is only calculable with simulators! §

In Linear AMDPs, we get Õ(K 8/9) regret via a new relative
concentration bound for stochastic matrices (in appendix).
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In Linear AMDPs, we get Õ(K 8/9) regret via a new relative
concentration bound for stochastic matrices (in appendix).

Yan Dai Adversarial Linear(-Q) MDPs



15/21

Introduction
Algorithm

Summary

This paper studies AMDPs with Linear Function Approximation:
In Linear-Q AMDPs (with simulators), we achieve the
first-ever Õ(
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Concluding Remarks

1 People now do better than our Õ(K 8/9) on Linear AMDPs:
Linear AMDP w/ Unknown Transition & Bandit Feedback
(our setup): Õ(K6/7) [Sherman et al., 2023b] and Õ(K4/5)
[Kong et al., 2023] (requires the existence of an exploratory
policy, but no polynomial dependency on λ0 presents).

Linear AMDP w/ Unknown Transition & Full Information
(weaker setup): Õ(K1/2) [Sherman et al., 2023a].

2 Our relative concentration result for stochastic matrices is
further improved by [Liu et al., 2023] (Õ(γ−2) ⇒ Õ(γ−1)).
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Thank you for listening!

Questions are more than welcomed.
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Appendix. Our Relative Concentration Bound

Lemma (New Covariance Concentration; Informal)
For a d-dimensional distribution D w/ covariance Σ, sampling
W = (4d log d

δ )γ
−2 i.i.d. samples ϕ1, ϕ2, . . . , ϕW from D ensures(

Σ̂†
)1/2

(γI +Σ)
(
Σ̂†
)1/2

∈ [(1 − 2√γ)I, (1 + 2√γ)I],

where Σ̂† =

(
γI +

W∑
w=1

ϕwϕ
T
w

)−1

.

Previous approach gives additive bounds, e.g., Matrix Geometric
Resampling (MGR) by [Neu and Olkhovskaya, 2020] needs
O(ϵ−2γ−3) samples for a Σ̂† s.t.

∥∥∥Σ̂† − (γI +Σ)−1
∥∥∥

2
≤ ϵ.
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