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Delayed Adversarial MAB

Delays (d4,d>, ..., dt) are chosen before-hand,
but are kept unknown to the agent at all time

Loss vectors U4, I5, ..., Ly are adversarial chosen,
but all entries are [0,1]-bounded (i.e., I € [0,1]%)

Agent picks action A¢ at each round t = 1,2, ..., T,
but only observes (t,l; 4,) at the end of round t + d;

Optimal regret achieved by Zimmert et al. (2020):

0(m+w/DlogK).




Motivation of Our Work



Motivation of Our Work

* Delay model easily generalize to other problems



Motivation of Our Work

* Delay model easily generalize to other problems
* Linear bandits
* Combinatorial bandits



Motivation of Our Work

* Delay model easily generalize to other problems
* Linear bandits
* Combinatorial bandits

* Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).



Motivation of Our Work

* Delay model easily generalize to other problems
* Linear bandits
* Combinatorial bandits

* Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).
* O(WKT + /D logK) optimal regret already achieved



Motivation of Our Work

* Delay model easily generalize to other problems
* Linear bandits
* Combinatorial bandits

* Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).

* O(WKT + /D logK) optimal regret already achieved
* But... crucially depend on negative-entropy regularizer
* Also task specific — not generalize to other problems



Motivation of Our Work

* Delay model easily generalize to other problems
* Linear bandits
* Combinatorial bandits

* Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).

* O(WKT + /D logK) optimal regret already achieved
* But... crucially depend on negative-entropy regularizer
* Also task specific — not generalize to other problems

* Want a universal approach to handle delays robustly!
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* Online Mirror Descent (OMD)
* Solves many online learning problems
o and their bandit-feedback versions
o e and their adversarial-loss versions

* OMD Algorithm =~ Regularizer + Step-sizes:

X¢pq1 = arg min(n(ft,x) + Dy (x, xt)), Vt.
XEA

* “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

e Sadly, vanilla OMD cannot handle delays
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Vanilla OMD

* Single-step OMD lemma:
(xe =y, 1) <07 De(y, %) — 17 Dy, VI (W) + 07 Dg (Wi, wy).
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* Single-step OMD lemma:
(xt -, Zt) <N 'Dy(y, x;) — U_IDLP(Y» V@*(W,t)) + 071Dy (Wi, wy).
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Banker-OMD

A novel framework, generalizing vanilla OMD

No assumptions on feedback delays and arrival order
* No words like “feedback of last action”

No assumptions on monotonicity of learning rates

Why Banker?

* Fine-grained analysis of potential terms due to OMD
steps
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High-Level |Ideas of Banker-OMD

* Calculate w{ after feedback arrives

* Step-dependent learning rate n; = o *

* 0; “action scale”

* Single-step OMD lemma still holds:
(xt -, lt) < o:Dy(y, x¢) — UtDtP(y; VLP*(W't)) + 0Dy (Wg, wy).

Primal Space A Dual Space R¥
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* Core observation:
* Convex combination on dual space keeps balance of bookkeeping: Vt4, t, ..., t;, we have

0 * / 0 * O-ti /
Z_Uti Dy (y, vy (Wti)) > oy Dy (y, x,), where g5 = z_ati , X, = VW (Z —th.).
l l

i Oy

* We are allowed to execute x* at scale ox “free of charge”!
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High-Level |Ideas of Banker-OMD

* QOverdrafting:

: Can be executed at scale
* Want if we want larger scale oy > oy = g, + 0, ?

* Apply a “default investment” xy = (% %) (with mirror image wy)
* Required “investment” on xq: by = 0y — O%
* “Imaginary” b;Dy(y,xo) — b;Dy/(y, V¥ (w,)) terms

* Banker-OMD: A% /'/ Dual Space R¥

* Consistent rule for regret bookkeeping, ensuring
Regretr < Z b; - Dy (y, x0) + 2 0t Dy (Wi, we) !
t t
* And... provides general scale rule to deal with delays!

0 (\/ D + T) — style bounds made easy!

b:Dy(y, xo) extra cost
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Main Theorem of Banker-OMD

* Given a practical algorithm based on vanilla OMD

with O(C\/T) regret for non-delayed adversarial
= bandit problem, there is a Banker-OMD based

q version using the same regularizer, guaranteeing
1 0(CVT + ¢'\/DlogD)
I regret in the delayed-feedback setting.
/ —< * Non-delayed Algorithm ~ OMD +

Regularizer + Step-sizes

* Delay-robust Algorithm =~ Banker-OMD+
Same regularizer + Modified step-sizes
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BOLO (Abernethy et al., 2008) ensures regret

New Results of D(ni T TogT)
Ba N ker_ O M D for n-dim adversarial linear bandits.

Banker-BOLO (Ours) ensures regret
0(n'>/logT (VT + /DlogD) + n?>VDlogT)

for n-dim delayed adversarial linear bandits.

State-of-the-art regret bound
for non-delayed scale-free MABs (Ours):

O(WL logT + L logL).

Banker version regret bound
for delayed scale-free MABs (Ours):

0 (VKD +T)L).




The End

* Thank for listening!
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