

Banker Online Mirror Descent

— A Universal Approach for Delayed Online Bandit Learning

Jiatai Huang *Yan Dai *Longbo HuangTsinghua UniversityTsinghua UniversityTsinghua Universityhjt18@mails.tsinghua.edu.cnyan-dai20@mails.tsinghua.edu.cnlongbohuang@tsinghua.edu.cn

[*]: Equal contribution.

• Delays $(d_1, d_2, ..., d_T)$ are chosen before-hand, but are kept unknown to the agent at all time

- Delays $(d_1, d_2, ..., d_T)$ are chosen before-hand, but are kept unknown to the agent at all time
- Loss vectors $l_1, l_2, ..., l_T$ are adversarial chosen, but all entries are [0,1]-bounded (i.e., $l_t \in [0,1]^A$)

- Delays $(d_1, d_2, ..., d_T)$ are chosen before-hand, but are kept unknown to the agent at all time
- Loss vectors $l_1, l_2, ..., l_T$ are adversarial chosen, but all entries are [0,1]-bounded (i.e., $l_t \in [0,1]^A$)
- Agent picks action A_t at each round t = 1, 2, ..., T, but only observes (t, l_{t,A_t}) at the end of round $t + d_t$

- Delays $(d_1, d_2, ..., d_T)$ are chosen before-hand, but are kept unknown to the agent at all time
- Loss vectors $l_1, l_2, ..., l_T$ are adversarial chosen, but all entries are [0,1]-bounded (i.e., $l_t \in [0,1]^A$)
- Agent picks action A_t at each round t = 1, 2, ..., T, but only observes (t, l_{t,A_t}) at the end of round $t + d_t$
- Optimal regret achieved by Zimmert et al. (2020): $O(\sqrt{KT} + \sqrt{D \log K}).$

• Delay model easily generalize to other problems

- Delay model easily generalize to other problems
 - Linear bandits
 - Combinatorial bandits
 - · · ·

- Delay model easily generalize to other problems
 - Linear bandits
 - Combinatorial bandits
 - ...
- Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).

- Delay model easily generalize to other problems
 - Linear bandits
 - Combinatorial bandits
 - ...
- Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).
 - $O(\sqrt{KT} + \sqrt{D \log K})$ optimal regret **already achieved**

- Delay model easily generalize to other problems
 - Linear bandits
 - Combinatorial bandits
 - ...
- Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).
 - $O(\sqrt{KT} + \sqrt{D \log K})$ optimal regret **already achieved**
 - But... crucially depend on negative-entropy regularizer
 - Also task specific not generalize to other problems

- Delay model easily generalize to other problems
 - Linear bandits
 - Combinatorial bandits
 - ...
- Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).
 - $O(\sqrt{KT} + \sqrt{D \log K})$ optimal regret **already achieved**
 - But... crucially depend on negative-entropy regularizer
 - Also task specific not generalize to other problems
- Want **a universal approach** to handle delays robustly!

• Online Mirror Descent (OMD)

- Online Mirror Descent (OMD)
 - Solves many online learning problems

- Online Mirror Descent (OMD)
 - Solves many online learning problems
 - and their bandit-feedback versions

- Online Mirror Descent (OMD)
 - Solves many online learning problems
 - and their bandit-feedback versions
 - and their adversarial-loss versions

- Online Mirror Descent (OMD)
 - Solves many online learning problems
 - and their bandit-feedback versions
 - and their adversarial-loss versions
 - OMD Algorithm ≈ Regularizer + Step-sizes:

$$x_{t+1} = \arg\min_{x \in A} \left(\eta \langle \tilde{l}_t, x \rangle + D_{\Psi}(x, x_t) \right), \qquad \forall t.$$

- Online Mirror Descent (OMD)
 - Solves many online learning problems
 - and their bandit-feedback versions
 - and their adversarial-loss versions
 - OMD Algorithm ≈ Regularizer + Step-sizes:

$$x_{t+1} = \arg\min_{x \in A} \left(\eta \langle \tilde{l}_t, x \rangle + D_{\Psi}(x, x_t) \right), \quad \forall t.$$

• "Greedily pick an action w.r.t. estimated loss, while keeping close to the last step"

- Online Mirror Descent (OMD)
 - Solves many online learning problems
 - and their bandit-feedback versions
 - and their adversarial-loss versions
 - OMD Algorithm ≈ Regularizer + Step-sizes:

$$x_{t+1} = \arg\min_{x \in A} \left(\eta \langle \tilde{l}_t, x \rangle + D_{\Psi}(x, x_t) \right), \quad \forall t.$$

- "Greedily pick an action w.r.t. estimated loss, while keeping close to the last step"
- Sadly, vanilla OMD cannot handle delays

• Single-step OMD lemma:

• Single-step OMD lemma:

• Single-step OMD lemma:

Banker-OMD

• A novel framework, generalizing vanilla OMD

- A novel framework, generalizing vanilla OMD
- No assumptions on feedback delays and arrival order

- A novel framework, generalizing vanilla OMD
- No assumptions on feedback delays and arrival order
 - No words like "feedback of last action"

- A novel framework, generalizing vanilla OMD
- No assumptions on feedback delays and arrival order
 - No words like "feedback of last action"
- No assumptions on monotonicity of learning rates

- A novel framework, generalizing vanilla OMD
- No assumptions on feedback delays and arrival order
 - No words like "feedback of last action"
- No assumptions on monotonicity of learning rates
- Why Banker?

- A novel framework, generalizing vanilla OMD
- No assumptions on feedback delays and arrival order
 - No words like "feedback of last action"
- No assumptions on monotonicity of learning rates
- Why Banker?
 - Fine-grained analysis of <u>potential terms</u> due to OMD steps

• Calculate w'_t after feedback arrives

- Calculate w'_t after feedback arrives
- Step-dependent learning rate $\eta_t = \sigma_t^{-1}$

- Calculate w'_t after feedback arrives
- Step-dependent learning rate $\eta_t = \sigma_t^{-1}$
 - σ_t "action scale"

- Calculate w'_t after feedback arrives
- Step-dependent learning rate $\eta_t = \sigma_t^{-1}$
 - σ_t "action scale"

- Calculate w'_t after feedback arrives
- Step-dependent learning rate $\eta_t = \sigma_t^{-1}$
 - σ_t "action scale"

- Calculate w'_t after feedback arrives
- Step-dependent learning rate $\eta_t = \sigma_t^{-1}$
 - σ_t "action scale"

- Calculate w'_t after feedback arrives
- Step-dependent learning rate $\eta_t = \sigma_t^{-1}$
 - σ_t "action scale"
- Single-step OMD lemma still holds:

 $\langle x_t - y, \tilde{l}_t \rangle \leq \sigma_t D_{\Psi}(y, x_t) - \sigma_t D_{\Psi}(y, \nabla \overline{\Psi}^*(w'_t)) + \sigma_t D_{\Psi^*}(w'_t, w_t).$

• Core observation:

- Core observation:
 - Convex combination on dual space keeps balance of bookkeeping: $\forall t_1, t_2, \dots, t_I$, we have

- Core observation:
 - Convex combination on dual space keeps balance of bookkeeping: $\forall t_1, t_2, \dots, t_I$, we have

- Core observation:
 - Convex combination on dual space keeps balance of bookkeeping: $\forall t_1, t_2, \dots, t_I$, we have

- Core observation:
 - Convex combination on dual space keeps balance of bookkeeping: $\forall t_1, t_2, \dots, t_I$, we have

- Core observation:
 - Convex combination on dual space keeps balance of bookkeeping: $\forall t_1, t_2, \dots, t_I$, we have

- Core observation:
 - Convex combination on dual space keeps balance of bookkeeping: $\forall t_1, t_2, \dots, t_I$, we have

- Core observation:
 - Convex combination on dual space keeps balance of bookkeeping: $\forall t_1, t_2, \dots, t_I$, we have

- Core observation:
 - Convex combination on dual space keeps balance of bookkeeping: $\forall t_1, t_2, \dots, t_I$, we have

- Core observation:
 - Convex combination on dual space keeps balance of bookkeeping: $\forall t_1, t_2, \dots, t_I$, we have

- Core observation:
 - Convex combination on dual space keeps balance of bookkeeping: $\forall t_1, t_2, \dots, t_I$, we have

- Core observation:
 - Convex combination on dual space keeps balance of bookkeeping: $\forall t_1, t_2, \dots, t_I$, we have $\sum_i \sigma_{t_i} D_{\Psi} \left(y, \nabla \overline{\Psi}^* (w'_{t_i}) \right) \ge \sigma_{\Sigma} D_{\Psi} (y, x_*), \quad \text{where } \sigma_{\Sigma} = \sum_i \sigma_{t_i} , x_* = \nabla \overline{\Psi}^* \left(\sum_i \frac{\sigma_{t_i}}{\sigma_{\Sigma}} w'_{t_i} \right).$
 - We are allowed to execute x^* at scale σ_{Σ} "free of charge"!

• Overdrafting:

- Overdrafting:
 - Want if we want larger scale $\sigma_t > \sigma_{\Sigma} = \sigma_{t_1} + \sigma_{t_2}$?

High-Level Ideas of Banker-OMD

- Overdrafting:
 - Want if we want larger scale $\sigma_t > \sigma_{\Sigma} = \sigma_{t_1} + \sigma_{t_2}$?
 - Apply a "default investment" $x_0 = \left(\frac{1}{K}, \dots, \frac{1}{K}\right)$ (with mirror image w_0)

Dual Space \mathbb{R}^{K}

 w'_{t_1}

^w₀

 w'_{t_2}

- Overdrafting:
 - Want if we want larger scale $\sigma_t > \sigma_{\Sigma} = \sigma_{t_1} + \sigma_{t_2}$?
 - Apply a "default investment" $x_0 = \left(\frac{1}{K}, \dots, \frac{1}{K}\right)$ (with mirror image w_0)
 - Required "investment" on x_0 : $b_t = \sigma_t \sigma_\Sigma$

- Overdrafting:
 - Want if we want larger scale $\sigma_t > \sigma_{\Sigma} = \sigma_{t_1} + \sigma_{t_2}$?
 - Apply a "default investment" $x_0 = \left(\frac{1}{K}, \dots, \frac{1}{K}\right)$ (with mirror image w_0)
 - Required "investment" on x_0 : $b_t = \sigma_t \sigma_\Sigma$

- Overdrafting:
 - Want if we want larger scale $\sigma_t > \sigma_{\Sigma} = \sigma_{t_1} + \sigma_{t_2}$?
 - Apply a "default investment" $x_0 = \left(\frac{1}{K}, \dots, \frac{1}{K}\right)$ (with mirror image w_0)
 - Required "investment" on x_0 : $b_t = \sigma_t \sigma_\Sigma$

- Overdrafting:
 - Want if we want larger scale $\sigma_t > \sigma_{\Sigma} = \sigma_{t_1} + \sigma_{t_2}$?
 - Apply a "default investment" $x_0 = \left(\frac{1}{K}, \dots, \frac{1}{K}\right)$ (with mirror image w_0)
 - Required "investment" on x_0 : $b_t = \sigma_t \sigma_\Sigma$
 - "Imaginary" $b_t D_{\Psi}(y, x_0) b_t D_{\Psi}(y, \nabla \overline{\Psi}^*(w_0))$ terms

High-Level Ideas of Banker-OMD

- Overdrafting:
 - Want if we want larger scale $\sigma_t > \sigma_{\Sigma} = \sigma_{t_1} + \sigma_{t_2}$?
 - Apply a "default investment" $x_0 = \left(\frac{1}{K}, \dots, \frac{1}{K}\right)$ (with mirror image w_0)
 - Required "investment" on x_0 : $b_t = \sigma_t \sigma_\Sigma$
 - "Imaginary" $b_t D_{\Psi}(y, x_0) b_t D_{\Psi}(y, \nabla \overline{\Psi}^*(w_0))$ terms

High-Level Ideas of Banker-OMD

- Overdrafting:
 - Want if we want larger scale $\sigma_t > \sigma_{\Sigma} = \sigma_{t_1} + \sigma_{t_2}$?
 - Apply a "default investment" $x_0 = \left(\frac{1}{K}, \dots, \frac{1}{K}\right)$ (with mirror image w_0)
 - Required "investment" on x_0 : $b_t = \sigma_t \sigma_\Sigma$
 - "Imaginary" $b_t D_{\Psi}(y, x_0) b_t D_{\Psi}(y, \nabla \overline{\Psi}^*(w_0))$ terms
- Banker-OMD:

High-Level Ideas of Banker-OMD

- Overdrafting:
 - Want if we want larger scale $\sigma_t > \sigma_{\Sigma} = \sigma_{t_1} + \sigma_{t_2}$?
 - Apply a "default investment" $x_0 = \left(\frac{1}{K}, \dots, \frac{1}{K}\right)$ (with mirror image w_0)
 - Required "investment" on x_0 : $b_t = \sigma_t \sigma_\Sigma$
 - "Imaginary" $b_t D_{\Psi}(y, x_0) b_t D_{\Psi}(y, \nabla \overline{\Psi}^*(w_0))$ terms
- Banker-OMD:
 - Consistent rule for regret bookkeeping, ensuring

$$\operatorname{Regret}_{T} \leq \sum_{t} b_{t} \cdot D_{\Psi}(y, x_{0}) + \sum_{t} \sigma_{t} D_{\Psi^{*}}(w_{t}', w_{t}) !$$

Dual Space \mathbb{R}^{K}

 w'_{t_1}

 W_0

 σ_{t_2}

 σ_t

 w'_{t_2}

Can be executed at scale

 $\sigma_t = \sigma_{t_1} + \sigma_{t_2} + b_t$

 $\nabla\overline{\Psi}{}^*$

High-Level Ideas of Banker-OMD

- Overdrafting:
 - Want if we want larger scale $\sigma_t > \sigma_{\Sigma} = \sigma_{t_1} + \sigma_{t_2}$?
 - Apply a "default investment" $x_0 = \left(\frac{1}{K}, \dots, \frac{1}{K}\right)$ (with mirror image w_0)
 - Required "investment" on x_0 : $b_t = \sigma_t \sigma_\Sigma$
 - "Imaginary" $b_t D_{\Psi}(y, x_0) b_t D_{\Psi}(y, \nabla \overline{\Psi}^*(w_0))$ terms
- Banker-OMD:
 - Consistent rule for regret bookkeeping, ensuring

$$\operatorname{Regret}_{T} \leq \sum_{t} b_{t} \cdot D_{\Psi}(y, x_{0}) + \sum_{t} \sigma_{t} D_{\Psi^{*}}(w_{t}', w_{t}) !$$

• And... provides general scale rule to deal with delays!

$$\tilde{O}\left(\sqrt{D+T}\right)$$
 – style bounds made easy!

 $b_t D_{\Psi}(y, x_0)$ extra cost

Main Theorem of Banker-OMD

• Given a practical algorithm based on vanilla OMD with $\mathcal{O}(C\sqrt{T})$ regret for <u>non-delayed adversarial</u> <u>bandit</u> problem, there is a Banker-OMD based version using the same regularizer, guaranteeing $\mathcal{O}(C\sqrt{T} + C'\sqrt{D\log D})$

regret in the delayed-feedback setting.

Main Theorem of Banker-OMD

• Given a practical algorithm based on vanilla OMD with $\mathcal{O}(C\sqrt{T})$ regret for <u>non-delayed adversarial</u> <u>bandit</u> problem, there is a Banker-OMD based version using the same regularizer, guaranteeing $\mathcal{O}(C\sqrt{T} + C'\sqrt{D\log D})$

regret in the delayed-feedback setting.

- Non-delayed Algorithm ≈ OMD + Regularizer + Step-sizes
- **Delay-robust** Algorithm ≈ **Banker-OMD**+ Same regularizer + Modified step-sizes

• BOLO (Abernethy et al., 2008) ensures regret $O(n^{1.5}\sqrt{T\log T})$

for *n*-dim adversarial linear bandits.

• BOLO (Abernethy et al., 2008) ensures regret $O(n^{1.5}\sqrt{T\log T})$

for *n*-dim adversarial linear bandits.

• Banker-BOLO (Ours) ensures regret $\mathcal{O}(n^{1.5}\sqrt{\log T}(\sqrt{T} + \sqrt{D\log D}) + n^2\sqrt{D}\log T)$

for *n*-dim delayed adversarial linear bandits.

• BOLO (Abernethy et al., 2008) ensures regret $O(n^{1.5}\sqrt{T\log T})$

for *n*-dim <u>adversarial linear bandits</u>.

• Banker-BOLO (Ours) ensures regret $\mathcal{O}(n^{1.5}\sqrt{\log T}(\sqrt{T} + \sqrt{D\log D}) + n^2\sqrt{D}\log T)$

for *n*-dim delayed adversarial linear bandits.

• State-of-the-art regret bound for <u>non-delayed scale-free MABs</u> (Ours): $\mathcal{O}(\sqrt{KT}L\log T + L\log L).$

for *n*-dim adversarial linear bandits.

• Banker-BOLO **(Ours)** ensures regret $\mathcal{O}(n^{1.5}\sqrt{\log T}(\sqrt{T} + \sqrt{D\log D}) + n^2\sqrt{D}\log T)$

for *n*-dim delayed adversarial linear bandits.

• State-of-the-art regret bound for <u>non-delayed scale-free MABs</u> (Ours): $\mathcal{O}(\sqrt{KT}L\log T + L\log L).$

• Banker version regret bound for <u>delayed scale-free MABs</u> (Ours): $\tilde{O}\left(\sqrt{K(D+T)}L\right)$.

The End

• Thank for listening!

References

Putta S R, Agrawal S. Scale-Free Adversarial Multi Armed Bandits[C]//International Conference on Algorithmic Learning Theory. PMLR, 2022: 910-930.

Bistritz I, Zhou Z, Chen X, et al. Online exp3 learning in adversarial bandits with delayed feedback[J]. Advances in neural information processing systems, 2019, 32.

Abernethy J D, Hazan E, Rakhlin A. An efficient algorithm for bandit linear optimization[C]//21st Annual Conference on Learning Theory. 2008.

Zimmert J, Seldin Y. An optimal algorithm for adversarial bandits with arbitrary delays[C]//International Conference on Artificial Intelligence and Statistics. PMLR, 2020: 3285-3294.

Thune T S, Cesa-Bianchi N, Seldin Y. Nonstochastic multiarmed bandits with unrestricted delays[J]. Advances in Neural Information Processing Systems, 2019, 32.